OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1689–1697

Laser Stability and Beam Steering in a Nonregular Polygonal Cavity

Bryn E. Currie, Geoffrey E. Stedman, and Robert W. Dunn  »View Author Affiliations


Applied Optics, Vol. 41, Issue 9, pp. 1689-1697 (2002)
http://dx.doi.org/10.1364/AO.41.001689


View Full Text Article

Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two laser stability criteria or lasing conditions for cavity geometry based on the standard ABCD matrix analysis and the Bilger and Stedman analysis [Appl. Opt. 26, 3710 (1987)] are reconciled. Beam steering from mirror misalignment is discussed similarly, generalizing the Bilger and Stedman analysis to nonregular polygons by extending the standard ABCD matrix analysis to 3 × 3 matrices, which facilitates the thorough design of large rectangular ring lasers and is applied to a number of existing or planned ring lasers with perimeters of 77–120 m.

© 2002 Optical Society of America

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(220.4830) Optical design and fabrication : Systems design

Citation
Bryn E. Currie, Geoffrey E. Stedman, and Robert W. Dunn, "Laser Stability and Beam Steering in a Nonregular Polygonal Cavity," Appl. Opt. 41, 1689-1697 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1689


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  2. W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44, 907–916 (1965).
  3. A. Siegman, Lasers (University Science, Mill Valley Calif., 1986), p. 744.
  4. H. R. Bilger and G. E. Stedman, “Stability of planar ring lasers with mirror misalignment,” Appl. Opt. 26, 3710–3716 (1987).
  5. R. W. Dunn, D. E. Shabalin, R. J. Thirkettle, G. J. MacDonald, G. E. Stedman, and K. U. Schreiber, “Design and initial operation of a 367-m2 rectangular ring laser,” Appl. Opt. 41, 1685–1688 (2002).
  6. C. H. Rowe, K. U. Schreiber, S. J. Cooper, B. T. King, M. Poulton, and G. E. Stedman, “Design and operation of a very large ring laser gyroscope,” Appl. Opt. 38, 2516–2523 (1999).
  7. R. W. Dunn, “Design of a triangular active ring laser 13 m on a side,” Appl. Opt. 37, 6405–6409 (1998).
  8. V. E. Zharov, S. N. Markova, M. V. Sazhin, and E. D. Fedoseev, “Calculation of an optical system for a laser-controlled gyroscope,” Moscow U. Phys. Bull. 47, 86–90 (1992).
  9. A. K. Bhowmik, “Polygonal optical cavities,” Appl. Opt. 39, 3071–3075 (2000).
  10. T. Skettrup, T. Meelby, T. K. Faerch, S. L. Frederiksen, and C. Pedersen, “Triangular laser resonators with astigmatic compensation,” Appl. Opt. 39, 4306–4312 (2000).
  11. A. Pancha, T. H. Webb, G. E. Stedman, D. P. McLeod, and K. U. Schreiber, “Ring laser detection of rotations from teleseismic waves,” Geophys. Res. Lett. 27, 3553–3556 (2000).
  12. K. U. Schreiber and G. E. Stedman, “Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. Solid Earth (submitted for publication).
  13. //www.phys.canterbury.ac.nz/p̃hysges/RingStabSpot.xls.
  14. A. Yariv, Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart & Winston, New York, 1976), pp. 72–74.
  15. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 1–73 (1997).
  16. K. U. Schreiber, C. H. Rowe, D. N. Wright, S. J. Cooper, and G. E. Stedman, “Precision stabilization of the optical frequency in a large ring laser gyroscope,” Appl. Opt. 37, 8371–8381 (1998).
  17. K. U. Schreiber, M. Schneider, C. H. Rowe, G. E. Stedman, and W. Schlüter, “Stabilising the operation of a large ring laser,” in Proceedings of the Symposium on Gyro Technology 1999, H. Sorg, ed. (Universität Stuttgart, Institut A für Mechanik, Stuttgart, Germany, September 1999), pp. 14.0–14.7.
  18. D. G. Glynn, Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand (personal communication, 1999).
  19. T. Muir and W. H. Metzler, “A treatise on the theory of determinants,” (New York: Dover Publications, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited