OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1698–1703

Sequence lasing in a gain-switched Yb3+,Er3+-doped silica double-clad fiber laser

Stuart D. Jackson, Ben C. Dickinson, and Terence A. King  »View Author Affiliations


Applied Optics, Vol. 41, Issue 9, pp. 1698-1703 (2002)
http://dx.doi.org/10.1364/AO.41.001698


View Full Text Article

Enhanced HTML    Acrobat PDF (139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental results relating to the gain-switched operation of a double-clad Yb3+,Er3+-doped silica fiber laser that is pulse pumped with the output from a flash-lamp-pumped Ti:sapphire laser are presented. For all the configurations of the fiber laser that we studied, the 2F5/22F7/2 laser transition of the Yb3+ ion lased prior to laser emission from the 4I13/24I15/2 transition of the Er3+ ion. To the best of our knowledge, this is the first reported operation of sequence lasing in the Yb3+,Er3+-codoped system. This succession of laser pulses deduced from the measurements of this investigation is a consequence of both the short intense pump pulse and the short 900-nm wavelength of the pump that does not overlap with any important excited-state absorption transitions. We believe that the predominant interionic interaction during the course of the pump pulse is the double-energy transfer to the Er3+ ion acting twice from the 2F5/2 energy level of the Yb3+ donor ion. A maximum total output of 1.65 mJ is obtained (1.38 mJ from the 2F5/22F7/2 transition of Yb3+ and 0.27 mJ from the 4I13/24I15/2 transition of Er3+) from a nonoptimized configuration of the fiber laser. The wavelength of the output from the fiber laser was measured to vary approximately linearly with fiber length from 1040 to 1046 nm for the Yb3+-based laser and 1535 to 1541 nm for the Er3+-based laser.

© 2002 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3460) Lasers and laser optics : Lasers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5560) Lasers and laser optics : Pumping

History
Original Manuscript: April 13, 2001
Revised Manuscript: October 31, 2001
Published: March 20, 2002

Citation
Stuart D. Jackson, Ben C. Dickinson, and Terence A. King, "Sequence lasing in a gain-switched Yb3+,Er3+-doped silica double-clad fiber laser," Appl. Opt. 41, 1698-1703 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, S. Yeh, E. Zucker, “110W fiber laser,” Electron. Lett. 35, 1158–1160 (1999). [CrossRef]
  2. H. M. Pask, J. L. Archambault, D. C. Hanna, L. Reekie, P. S. Russell, J. E. Townsend, A. C. Tropper, “Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1-µm region,” Electron. Lett. 30, 863–865 (1994). [CrossRef]
  3. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000). [CrossRef]
  4. A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tunnermann, G. Korn, “High average power ultra-fast fiber chirped pulse amplification system,” Appl. Phys. B 71, 889–891 (2000). [CrossRef]
  5. R. A. Hill, D. Stern, M. L. Lesiecki, J. Hsia, M. W. Berns, “Effects of pulse-width on erbium-YAG laser photothermal trabecular ablation (LTA),” Lasers Surg. Med. 13, 440–446 (1993). [CrossRef]
  6. T. S. Dietlein, P. C. Jacobi, G. K. Krieglstein, “Ab interno infrared laser trabecular ablation: preliminary short-term results in patients with open-angle glaucoma,” Graef. Arch. Clin. Exp. 235, 349–353 (1997). [CrossRef]
  7. T. S. Dietlein, P. C. Jacobi, G. K. Krieglstein, “Erbium:YAG laser trabecular ablation (LTA) in the surgical treatment of glaucoma,” Lasers Surg. Med. 23, 104–110 (1998). [CrossRef]
  8. H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995). [CrossRef]
  9. M. Frenz, G. Paltauf, H. SchmidtKloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996). [CrossRef] [PubMed]
  10. M. Frenz, F. Konz, H. Pratisto, H. P. Weber, A. S. Silenok, V. I. Konov, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998). [CrossRef]
  11. S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998). [CrossRef]
  12. B. C. Dickinson, S. D. Jackson, T. A. King, “10 mJ total output from a gain-switched Tm-doped fiber laser,” Opt. Commun. 182, 199–203 (2000). [CrossRef]
  13. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, S. D. Jackson, “Investigation of a 791-nm pulse-pumped 2.7-µm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001). [CrossRef]
  14. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999). [CrossRef]
  15. P. Petropoulos, S. Dhanjal, D. J. Richardson, N. I. Zheludev, “Passive Q-switching of an Er3+:Yb3+ fiber laser with a fibrised liquefying gallium mirror,” Opt. Commun. 166, 239–243 (1999). [CrossRef]
  16. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 µm,” Opt. Lett. 24, 388–390 (1999). [CrossRef]
  17. V. N. Filippov, A. N. Starodumov, A. N. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett. 26, 343–345 (2001). [CrossRef]
  18. L. G. Luo, P. L. Chu, “Passive Q-switched erbium-doped fiber laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999). [CrossRef]
  19. See, for example, fiber-coupled quasi-cw diodes JOLD-35-QAXF-1L and JOLD-70-QAXF-2P from Jenoptik Laserdiode GmbH, Prüssingstrasse 41, D-07745 Jena, Germany; www.jold.de .
  20. S. D. Jackson, T. A. King, “Efficient high power operation of a Nd:YAG-pumped Yb:Er-doped silica fiber laser,” Opt. Commun. 172, 271–278 (1999). [CrossRef]
  21. C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994). [CrossRef]
  22. R. S. Quimby, “Output saturation in a 980-nm pumped erbium-doped fiber amplifier,” Appl. Opt. 30, 2546–2552 (1991). [CrossRef] [PubMed]
  23. R. S. Quimby, W. J. Miniscalo, B. Thomson, “Excited state absorption at 980 nm in erbium doped glass,” in Fiber Laser Sources and Amplifiers III, M. J. Digonnet, E. Snitzer, eds., Proc. SPIE1581, 72–79 (1991). [CrossRef]
  24. S. Zemon, B. Pederson, G. Lambert, W. J. Miniscalco, L. J. Andrews, R. W. Davies, T. Wei, “Excited-state absorption cross-sections in the 800-nm band for Er-doped, Al/P-silica fibers—measurements and amplifier modeling,” IEEE Photon. Technol. Lett. 3, 621–624 (1991). [CrossRef]
  25. P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999). [CrossRef]
  26. E. Maurice, G. Monnom, B. Dussardier, D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited