OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1741–1749

High-range-resolution velocity-estimation techniques for coherent Doppler lidars with exponentially shaped laser pulses

Ljuan L. Gurdev, Tanja N. Dreischuh, and Dimitar V. Stoyanov  »View Author Affiliations


Applied Optics, Vol. 41, Issue 9, pp. 1741-1749 (2002)
http://dx.doi.org/10.1364/AO.41.001741


View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of an analysis of the autocovariance of the complex heterodyne signal, some novel algorithms are derived and investigated for recovering the nonuniform Doppler-velocity coherent-lidar profiles within the lidar resolution interval conditioned by the sensing laser-pulse length. The case of exponentially shaped sensing laser pulses is considered. The algorithm performance and efficiency are studied and illustrated by computer simulations (based on the use of pulse models and real laser pulses), taking into account the influence of additive noise and radial-velocity fluctuations. It is shown that, at some reasonable number of signal realizations used and with appropriate data processing to suppress the noise effects, the Doppler-velocity profiles can be determined with a considerably shorter resolution interval in comparison with that (usually accepted as a lower bound) determined by the pulse length.

© 2002 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: December 5, 2000
Revised Manuscript: October 1, 2001
Published: March 20, 2002

Citation
Ljuan L. Gurdev, Tanja N. Dreischuh, and Dimitar V. Stoyanov, "High-range-resolution velocity-estimation techniques for coherent Doppler lidars with exponentially shaped laser pulses," Appl. Opt. 41, 1741-1749 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  2. R. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997). [CrossRef] [PubMed]
  3. S. M. Hannon, J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994). [CrossRef]
  4. L. L. Gurdev, T. N. Dreischuh, D. V. Stoyanov, “High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data,” J. Opt. Soc. Am. A 18, 134–142 (2001). [CrossRef]
  5. T. J. Kane, J. D. Kmetec, “Diode pumped Tm:YAG laser radar transceiver,” in Coherent Laser Radar, Vol. 19 of the 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 285–288.
  6. S. Schnell, V. Ostroumov, J. Breguet, W. Luethy, H. Weber, I. Shcherbakov, “Acoustooptic Q switching of erbium lasers,” IEEE J. Quantum Electron. 26, 1111–1114 (1990). [CrossRef]
  7. J. Liu, D. Shen, S.-C. Tam, Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37, 888–896 (2001). [CrossRef]
  8. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001). [CrossRef]
  9. T. Kondoh, S. Lee, D. P. Hutchinson, R. K. Richards, “Collective Thomson scattering using a pulsed CO2 laser in JT-60U,” Rev. Sci. Instrum. 72, 1143–1146 (2001). [CrossRef]
  10. J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–476 (1982). [CrossRef] [PubMed]
  11. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1: Single Scattering and Transport Theory (Academic, New York, 1978).
  12. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  13. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  14. L. L. Gurdev, T. N. Dreischuh, D. V. Stoyanov, “Deconvolution techniques for improving the resolution of long-pulse lidars,” J. Opt. Soc. Am. A 10, 2296–2306 (1993). [CrossRef]
  15. L. L. Gurdev, T. N. Dreischuh, D. V. Stoyanov, “Pulse backscattering tomography based on lidar principle,” Opt. Commun. 151, 339–352 (1998). [CrossRef]
  16. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  17. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987). [CrossRef]
  18. Ph. Salamitou, A. Dabas, P. Flamant, “Simulations in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995). [CrossRef] [PubMed]
  19. I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Nauka, Moscow, and Teubner, Leipzig, 1989).
  20. V. I. Tatarski, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967).
  21. R. W. Hamming, Digital Filters (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  22. K. S. Miller, M. M. Rochwarger, “A covariance approach to spectral moment estimation,” IEEE Trans. Inform. Theory IT-18, 588–596 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited