OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1760–1767

Assessment of a Multibeam Fizeau Wedge Interferometer for Doppler Wind Lidar

Jack A. McKay  »View Author Affiliations


Applied Optics, Vol. 41, Issue 9, pp. 1760-1767 (2002)
http://dx.doi.org/10.1364/AO.41.001760


View Full Text Article

Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 106 or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

© 2002 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Citation
Jack A. McKay, "Assessment of a Multibeam Fizeau Wedge Interferometer for Doppler Wind Lidar," Appl. Opt. 41, 1760-1767 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1760


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
  2. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
  3. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, and T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
  4. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, and N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
  5. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, and D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503–3513 (1983).
  6. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
  7. M. J. McGill, M. Marzouk, V. S. Scott, and J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
  8. T. L. Killeen and P. B. Hays, “Doppler line profile analysis for a multichannel Fabry-Perot interferometer,” Appl. Opt. 23, 612–620 (1984).
  9. J.-M. Gagné, J.-P. Saint-Dizier, and M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
  10. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
  11. D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, and K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).
  12. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
  13. B. M. Gentry and C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
  14. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
  15. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
  16. R. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71, 1255–1263 (1981). Meyer’s expression for the transmitted amplitude agrees with Born and Wolf if a term unity in his Eq. (11) is replaced with exp(iφ1), correcting a small error in the evaluation of the phases of the cascade of transmitted waves. Meyer’s Eq. (12) must also be revised, replacing the expression (S1 + S2) with (S12 + S22).
  17. T. T. Kajava, H. M. Lauranto, and R. R. E. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10, 1980–1989 (1993).
  18. T. T. Kajava, H. M. Lauranto, and A. T. Friberg, “Interference pattern of the Fizeau interferometer,” J. Opt. Soc. Am. A 11, 2045–2054 (1994).
  19. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Sec. 7.6.7.
  20. J. J. Snyder, “Compact static wavemeter for both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959–960 (1978).
  21. J. L. Gardner, “Compact Fizeau wavemeter,” Appl. Opt. 24, 3570–3573 (1985).
  22. G. Koppelmann, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. I,” Optik (Stuttgart) 36, 474–493 (1972).
  23. G. Koppelmann and W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).
  24. Ref. 19, Sect. 7.6.7, Eq. (100).
  25. P. Hariharan, Optical Interferometry (Academic, North Ryde, N.S.W., Australia, 1985), (Eq. 4.25).
  26. P. Langenbeck, “Fizeau interferometer-fringe sharpening,” Appl. Opt. 9, 2053–2058 (1970).
  27. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
  28. D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). For the solid etalon filters considered by Rust, the permissible solid angle of illumination is increased by the square of the index of refraction of the etalon material.
  29. D. Rees, Hovemere Ltd., Kent, UK (personal communication, 1998).
  30. D. Rees and I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent lidar,” Appl. Opt. 29, 4133–4144 (1990).
  31. D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, and J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
  32. Ref. 19, Sect. 7.6.7, text following Eq. (102).
  33. J. A. McKay, P. M. Laufer, and L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited