OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1768–1779

Bistatic coherent laser radar signal-to-noise ratio

Eric P. Magee and Timothy J. Kane  »View Author Affiliations

Applied Optics, Vol. 41, Issue 9, pp. 1768-1779 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the signal-to-noise ratio (SNR) for a bistatic coherent laser radar (CLR) system. With a bistatic configuration, the spatial resolution is determined by the overlap of the transmit beam and the virtual backpropagated local oscillator beam. This eliminates the trade-off between range resolution and the bandwidth of the transmitted pulse inherent in monostatic systems. The presented analysis is completely general in that the expressions can be applied to both monostatic and bistatic CLR systems. The heterodyne SNR is computed under the assumption of untruncated Gaussian optics and untruncated Gaussian beam profiles. The analysis also includes the effects of refractive turbulence. The results show that, for maximum SNR, small transmit and local oscillator beam profiles (e-1 intensity radius) are desired.

© 2002 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.4020) Scattering : Mie theory

Original Manuscript: April 25, 2001
Revised Manuscript: September 27, 2001
Published: March 20, 2002

Eric P. Magee and Timothy J. Kane, "Bistatic coherent laser radar signal-to-noise ratio," Appl. Opt. 41, 1768-1779 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, D. Moerder, “Coherent launch-site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993). [CrossRef] [PubMed]
  2. S. F. Clifford, J. C. Kaimal, R. J. Lataitis, R. G. Strauch, “Ground-based remote profiling in atmospheric studies: an overview,” Proc. IEEE 82, 313–355 (1994). [CrossRef]
  3. A. V. Jelalian, Laser Radar Systems (Artech House, Norwood, Mass., 1992).
  4. M. Harris, G. Constant, C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40, 1501–1506 (2001). [CrossRef]
  5. R. M. Huffaker, “Laser Doppler detection systems for gas velocity measurement,” Appl. Opt. 9, 1026–1039 (1970). [CrossRef] [PubMed]
  6. E. P. Magee, “Performance analysis of a multistatic coherent Doppler lidar,” Ph.D. dissertation (Pennsylvania State University, University Park, Pa., 1998).
  7. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979). [CrossRef] [PubMed]
  8. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987). [CrossRef] [PubMed]
  9. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  10. R. G. Frehlich, “Conditions for optimal performance of monostatic coherent laser radar,” Opt. Lett. 15, 643–645 (1990). [CrossRef] [PubMed]
  11. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  12. R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne windshear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1991). [CrossRef] [PubMed]
  13. M. J. Kavaya, P. J. M. Suni, “Continuous wave coherent laser radar: calculation of measurement location and volume,” Appl. Opt. 30, 2634–2642 (1991). [CrossRef] [PubMed]
  14. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  15. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  16. R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993). [CrossRef] [PubMed]
  17. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994). [CrossRef]
  18. M. C. Jackson, “The geometry of bistatic radar systems,” IEE Proc. F 133, 604–612 (1986).
  19. N. J. Willis, Bistatic Radar (Artech House, Boston, Mass., 1991).
  20. M. Fogiel, ed., Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms (Research & Education Association, Piscataway, N.J., 1994).
  21. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  22. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  23. K. P. Chan, D. K. Killinger, N. Sugimoto, “Heterodyne Doppler 1-µm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991). [CrossRef] [PubMed]
  24. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in a random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  25. R. G. Frehlich, “Space-time fourth moments of waves propagating in random media,” Radio Sci. 22, 481–490 (1987). [CrossRef]
  26. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  27. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Dedham, Mass., 1987).
  28. R. G. Frehlich, “Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence,” J. Opt. Soc. Am. A 4, 360–366 (1987). [CrossRef]
  29. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  30. C. Y. Young, L. C. Andrews, “Effects of a modified spectral model on the spatial coherence of a laser beam,” Waves Random Media 4, 385–397 (1994). [CrossRef]
  31. L. C. Andrews, Laser Beam Propagation through Random Media (SPIE, Bellingham, Wash., 1998).
  32. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  33. L. D. Dickson, “Characteristics of a propagating Gaussian beam,” Appl. Opt. 9, 1854–1861 (1970). [CrossRef] [PubMed]
  34. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  35. P. Koepke, M. Hess, “Scattering functions of tropospheric aerosols: the effects of nonspherical particles,” Appl. Opt. 27, 2422–2430 (1988). [CrossRef] [PubMed]
  36. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  37. W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Tech. Note NCAR/TN-140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979); updated version available at ftp://climate.gsfc.nasa.gov/pub/wiscombe/Single_Scatt/Homogen_Sphere/Exact_Mie/ ).
  38. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  39. E. P. Shettle, R. W. Fenn, “Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  40. E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles (Wiley, New York, 1976).
  41. K. Parameswaran, K. D. Rose, B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541–2552 (1984). [CrossRef]
  42. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  43. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II: Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993). [CrossRef]
  44. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited