OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 9 — Mar. 20, 2002
  • pp: 1798–1804

Raman and Rayleigh holographic lidar

Geoff Andersen, Jason K. Brasseur, Randall J. Knize, and Paul Haris  »View Author Affiliations


Applied Optics, Vol. 41, Issue 9, pp. 1798-1804 (2002)
http://dx.doi.org/10.1364/AO.41.001798


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed a novel rotational Raman and Rayleigh lidar system that incorporates a simple holographic optical element. The hologram simultaneously disperses and focuses the backscattered signal light so that narrow spectral features can be isolated and detected with high efficiency. By measuring the relative strength of several nitrogen rotational Raman lines, we can obtain an accurate temperature of the atmosphere at a given altitude without the need for external calibration. Simultaneous photon counting of the Rayleigh backscatter signal permits temperature measurements at much higher altitudes.

© 2002 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman
(290.5870) Scattering : Scattering, Rayleigh

History
Original Manuscript: August 28, 2001
Revised Manuscript: December 5, 2001
Published: March 20, 2002

Citation
Geoff Andersen, Jason K. Brasseur, Randall J. Knize, and Paul Haris, "Raman and Rayleigh holographic lidar," Appl. Opt. 41, 1798-1804 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-9-1798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1971). [CrossRef]
  2. A. Cohen, J. A. Cooney, K. N. Geller, “Atmospheric temperature profiles from measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976). [CrossRef] [PubMed]
  3. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974). [CrossRef]
  4. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  5. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, M. V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef] [PubMed]
  6. P. A. T. Haris, C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the Second Topical Symposium on Combined Optical-Microwave Earth and Atmospheric Sensing (Institute of Electrical and Electronics Engineers, New York, 1995), 141–144. [CrossRef]
  7. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996). [CrossRef] [PubMed]
  8. G. E. Walrafen, “Slitless optical-fiber laser-Raman spectrometer employing a concave holographic grating,” Appl. Spectrosc. 31, 295–298 (1977). [CrossRef]
  9. J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000). [CrossRef]
  10. T. A. Berkoff, D. N. Whiteman, R. D. Rallison, G. K. Schwemmer, L. Ramon-Izquierdo, H. Plotkin, “Remote detection of Raman scattering by use of a holographic optical element as a dispersive telescope,” Opt. Lett. 25, 1201–1203 (2000). [CrossRef]
  11. G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970). [CrossRef]
  12. A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980). [CrossRef]
  13. R. J. Sica, P. S. Argall, C. T. Sparrow, S. Sargoytchev, S. Flatt, E. F. Borra, L. Girard, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995). [CrossRef] [PubMed]
  14. T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998). [CrossRef]
  15. M. R. Gross, T. J. McGee, R. A. Ferrare, U. N. Singh, P. Kimvilakani, “Temperature measurements made with a combined Rayleigh–Mie and Raman lidar,” Appl. Opt. 36, 5987–5995 (1997). [CrossRef] [PubMed]
  16. M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967). [CrossRef]
  17. R. W. Meier, “Magnification and third-order aberrations in holography,” J. Opt. Soc. Am. 55, 987–992 (1965).
  18. Y. Amitai, A. A. Friesem, V. Weiss, “Designing holographic lenses with different recording and readout wavelengths,” J. Opt. Soc. Am. A 7, 80–86 (1990). [CrossRef]
  19. G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, eds., Optics of Diffractive and Gradient-Index Elements and Systems, Vol. PM42 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1997).
  20. G. C. Herring, W. K. Bischel, “Model of the rotational Raman gain coefficients for N2 in the atmosphere,” Appl. Opt. 26, 2988–2994 (1987). [CrossRef] [PubMed]
  21. I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993). [CrossRef]
  22. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993). [CrossRef]
  23. C.-Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992). [CrossRef] [PubMed]
  24. J. R. Jenness, D. B. Lysak, C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997). [CrossRef] [PubMed]
  25. G. Hertzberg, Spectra of Diatomic Molecules, 2nd ed., Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1989), pp. 124–125.
  26. Y. Arshinov, S. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999). [CrossRef]
  27. γ2 of Ref. 3 is for an excitation wavelength of 488 nm. Because this value is common to all of the nitrogen RRS lines, the precise value is not necessary to determine the temperature of our scheme. Thus we used the quoted value for 488 nm.
  28. The equation for the transmission of the atmosphere is based on a numerical fit to a low-aerosol content, mid-latitude, springtime lowtran atmosphere at the laser wavelength.
  29. The overall optical efficiency value was estimated from the product of the efficiencies for the telescope fiber coupling (90%), the HOE itself (35%), the coupling into the individual fibers (90%), and the PMTs (10%).
  30. For the Rayleigh model, the mass spectrometer incoherent scatter (MSIS-E-90) model atmosphere was used instead of the International Civil Aviation Organization standard used for the Raman model. The numbers were generated with on-line software available at http://nssdc.gsfc.nasa.gov/space/model/atmos/msise.html and based on Ref. 27.
  31. A. E. Hedin, “Extension of the MSIS thermosphere model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited