OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 1 — Jan. 1, 2003
  • pp: 124–134

In vivo Determination of Local Skin Optical Properties and Photon Path Length by Use of Spatially Resolved Diffuse Reflectance with Applications in Laser Doppler Flowmetry

Marcus Larsson, Henrik Nilsson, and Tomas Strömberg  »View Author Affiliations


Applied Optics, Vol. 42, Issue 1, pp. 124-134 (2003)
http://dx.doi.org/10.1364/AO.42.000124


View Full Text Article

Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Methods for local photon path length and optical properties estimation, based on measured and simulated diffuse reflectance within 2 mm from the light source, are proposed and evaluated <i>in vivo</i> on Caucasian human skin. The accuracy of the methods was good (2%–7%) for path length and reduced scattering but poor for absorption estimation. Reduced scattering and absorption were systematically lower in the fingertip than in the forearm skin (633 nm). A maximum intrasite and interindividual variation of ~35% in an average photon path length was found. The methodology was applied in laser Doppler flowmetry, where path-length normalization of the estimated perfusion removed the optical property dependency.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.4760) Materials : Optical properties
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.7050) Scattering : Turbid media

Citation
Marcus Larsson, Henrik Nilsson, and Tomas Strömberg, "In vivo Determination of Local Skin Optical Properties and Photon Path Length by Use of Spatially Resolved Diffuse Reflectance with Applications in Laser Doppler Flowmetry," Appl. Opt. 42, 124-134 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-1-124


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
  2. W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
  4. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
  5. F. Bevilacqua, and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
  6. J. S. Dam, P. E. Andersen, T. Dalgaard, and P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
  7. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
  8. R. A. J. Groenhuis, J. J. ten Bosch, and H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
  9. J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
  10. B. C. Wilson, and S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
  11. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
  12. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, and M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE 4613, 212–221 (2002).
  13. G. E. Nilsson, T. Tenland, and P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
  14. G. E. Nilsson, M. Arildsson, and M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, and R. Pratesi, eds.(Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.
  15. G. E. Nilsson, A. Jakobsson, and K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares and A. M. Scheggi, eds., Proc. SPIE 1524, 90–109 (1992).
  16. R. F. Bonner, and R. Nossal, “Principles of Laser-Doppler Flowmetry,” in Laser-Doppler Blood Flowmetry, A. P. Shepherd and P. Å. Öberg, eds.(Kluwer Academic, Boston, Mass., 1990), pp. 17–45.
  17. R. F. Bonner, and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
  18. G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22, 343–348 (1984).
  19. H. Nilsson, M. Larsson, G. E. Nilsson, and T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
  20. R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28, 2238–2244 (1989).
  21. M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
  22. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
  23. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 131–191.
  24. F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
  25. L. G. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  26. V. V. Tuchin, “Optical properties of tissues with strong (multiple) scattering,” in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts (SPIE Press, Bellingham, Wash., 2000), pp. 13–33.
  27. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
  28. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, and W. G. Zijlstra, “Optical proerties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
  29. G. E. Nilsson, T. Tenland, and P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
  30. T. Tenland, E. G. Salerud, G. E. Nilsson, and P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
  31. I. M. Braverman, A. Keh, and D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
  32. S. L. Jacques, “Skin optics,” 1998; http://omlc.ogi.edu/news/jan98/skinoptics.html.
  33. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
  34. I. M. Braverman, “The cutaneous microcirculation,” J. Invest. Dermatol. Symp. Proc. 5, 3–9 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited