OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 1 — Jan. 1, 2003
  • pp: 30–37

Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate)

Oliver Beyer, Ingo Nee, Frank Havermeyer, and Karsten Buse  »View Author Affiliations


Applied Optics, Vol. 42, Issue 1, pp. 30-37 (2003)
http://dx.doi.org/10.1364/AO.42.000030


View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bragg gratings are recorded in doped and partially polymerized poly(methyl methacrylate) with green light (wavelength, 532 nm) in transmission geometry, and the gratings are read in reflection geometry with infrared light (wavelength, ∼1550 nm). Diffraction efficiencies of more than 99% with a wavelength bandwidth of ∼1 nm are obtained for single gratings with a typical length of 15 mm. Superposition of four gratings in a volume sample has been demonstrated as well. The material is promising for use in the fabrication of add-drop filters, attenuators, switches, and multiplexers-demultiplexers for optical networks that use wavelength division multiplexing.

© 2003 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(230.1480) Optical devices : Bragg reflectors

History
Original Manuscript: May 29, 2002
Revised Manuscript: October 7, 2002
Published: January 1, 2003

Citation
Oliver Beyer, Ingo Nee, Frank Havermeyer, and Karsten Buse, "Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate)," Appl. Opt. 42, 30-37 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-1-30


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Goralski, Optical Networking and WDM (McGraw-Hill, New York, 2001).
  2. J.-P. Laude, DWDM Fundamentals, Components, and Applications (Artech House, Boston, Mass., 2002).
  3. S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998). [CrossRef]
  4. G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993). [CrossRef] [PubMed]
  5. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994). [CrossRef]
  6. V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994). [CrossRef]
  7. S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999). [CrossRef]
  8. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  9. A. Othonos, K. Kalli, Fiber Bragg Gratings (Artech House, Boston, Mass., 1999).
  10. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  11. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993). [CrossRef]
  12. L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000). [CrossRef]
  13. H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001). [CrossRef]
  14. H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000). [CrossRef]
  15. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001). [CrossRef]
  16. N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, “Holographic Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal composite,” Opt. Lett. 27, 182–184 (2002). [CrossRef]
  17. J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002). [CrossRef]
  18. P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002). [CrossRef]
  19. H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984). [CrossRef]
  20. H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984). [CrossRef]
  21. R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990). [CrossRef] [PubMed]
  22. F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998). [CrossRef]
  23. F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001). [CrossRef]
  24. H.-G. Elias, Grundlagen: Struktur—Synthese—Eigenschaften, Vol. 1 of Makromoleküle (Hüthig & Wepf Verlag, Basel, Switzerland, 1990).
  25. M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).
  26. P. E. M. Allen, C. R. Patrick, Kinetics and Mechanisms of Polymerization Reactions (Halsted, New York, 1974).
  27. J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985). [CrossRef]
  28. D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973). [CrossRef]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  30. S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969). [CrossRef]
  31. F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980). [CrossRef]
  32. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000). [CrossRef]
  33. T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited