OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 1 — Jan. 1, 2003
  • pp: 9–17

Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons

Anna Thaning, Zbigniew Jaroszewicz, and Ari T. Friberg  »View Author Affiliations

Applied Optics, Vol. 42, Issue 1, pp. 9-17 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Axicons in oblique illumination produce broadened focal lines, a problem, e.g., in scanning applications. A compact mathematical description of the focal segment is presented, for the first time, to our knowledge, and the results are compared with elliptical axicons in normal illumination. In both cases, analytical expressions in the form of asteroid curves are obtained from asymptotic wave theory and caustic surfaces. The results are confirmed by direct diffraction simulations and by experiments. In addition we show that at a fixed angle an elliptical axicon can be used to compensate for the adverse effects of oblique illumination.

© 2003 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(230.3990) Optical devices : Micro-optical devices
(260.1960) Physical optics : Diffraction theory

Original Manuscript: June 28, 2002
Revised Manuscript: September 3, 2002
Published: January 1, 2003

Anna Thaning, Zbigniew Jaroszewicz, and Ari T. Friberg, "Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons," Appl. Opt. 42, 9-17 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. L. M. Soroko, Meso-Optics—Foundations and Applications (World Scientific, Singapore, 1996), Chap. 2 and references therein.
  3. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Research & Development Treatises, Vol. 5 (SPIE Polish Chapter, Warsaw, 1997).
  4. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef] [PubMed]
  5. J. A. Davis, E. Carcole, D. M. Cottrell, “Range-finding by triangulation with nondiffracting beams,” Appl. Opt. 35, 2159–2161 (1996). [CrossRef] [PubMed]
  6. G. Bickel, G. Haüsler, M. Haul, “Triangulation with extended range of depth,” Opt. Eng. 24, 975–977 (1985). [CrossRef]
  7. G. Haüsler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988). [CrossRef] [PubMed]
  8. I. Golub, R. Tremblay, “Light focusing and guiding by an axicon-pair generated tubular light beam,” J. Opt. Soc. Am. B 7, 1264–1267 (1990). [CrossRef]
  9. J. W. Ogland, “Mirror system for uniform beam transformation in high-power annular lasers,” Appl. Opt. 17, 2917–2923 (1978). [CrossRef] [PubMed]
  10. R. Tremblay, Y. D’Astous, G. Roy, M. Blanchard, “Laser plasmas optically pumped by focusing with an axicon a CO2-TEA laser beam in a high-pressure gas,” Opt. Commun. 28, 193–196 (1979). [CrossRef]
  11. J. Arlt, T. Hitomi, K. Dholakia, “Atom guiding along Laguerre-Gaussian and Bessel light beams,” Appl. Phys. B 71, 549–554 (2000). [CrossRef]
  12. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  13. J. Arlt, K. Dholakia, “Generation of high-order Besel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  14. R. Arimoto, C. Saloma, T. Tanaka, S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653–6657 (1992). [CrossRef] [PubMed]
  15. Z. Bin, L. Zhu, “Diffraction property of an axicon in oblique illumination,” Appl. Opt. 37, 2563–2568 (1998). [CrossRef]
  16. T. Tanaka, S. Yamoto, “Comparison of aberration between axicon and lens,” Opt. Commun. 184, 113–118 (2000). [CrossRef]
  17. Z. Jaroszewicz, A. Thaning, A. T. Friberg, “Focal segments of obliquely illuminated axicons,” European Optical Society, Topical Meetings Digest Series 30, 82–83 (2001).
  18. A. Thaning, Z. Jaroszewicz, A. T. Friberg, “Axicon focusing in oblique illumination,” ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds., Proc. SPIE4829, 295–296 (2002).
  19. S. Bara, Z. Jaroscewicz, A. Kolodziejczyk, M. Sypek, “Method for scaling the output focal curves by computer generated zone plates,” Opt. Laser Technol. 23, 303–307 (1991). [CrossRef]
  20. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, UK, 1986), Chaps. 8 and 9, Sec. 10.3.
  21. M. Born, E. Wolf, Principles of Optics, 7th edition (Cambridge University, Cambridge, UK, 1999), Sec. 8.3.2 and Appendix III.
  22. J. J. Stamnes, “Diffraction, asymptotics and catastrophes,” Opt. Acta 29, 823–842 (1982). [CrossRef]
  23. N. C. Albertsen, P. Balling, N. E. Jensen, “Caustics and caustic corrections to a field diffracted by a curved edge,” IEEE Trans. Antennas Propag. 25, 297–303 (1977). [CrossRef]
  24. D. Leseberg, C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020–3024 (1988). [CrossRef] [PubMed]
  25. Z. Jaroscewicz, A. Kolodziejczyk, M. Sypek, C. Gomez-Reino, “Nonparaxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43, 617–637 (1996). [CrossRef]
  26. B. Lunitz, “Strahlformung und-führung mit mikrooptischen Elementen und Systemen,” Ph.D dissertation (Fern Universität, Hagen, Germany, 2000) (in German).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited