OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 10 — Apr. 1, 2003
  • pp: 1757–1762

Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores

Edward T. Arakawa, Nickolay V. Lavrik, and Panos G. Datskos  »View Author Affiliations

Applied Optics, Vol. 42, Issue 10, pp. 1757-1762 (2003)

View Full Text Article

Acrobat PDF (105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100–1000 spores). The spectra acquired in the wavelength range of 690–4000 cm−1 (2.5–14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

© 2003 Optical Society of America

OCIS Codes
(000.1410) General : Biography
(040.3060) Detectors : Infrared
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Edward T. Arakawa, Nickolay V. Lavrik, and Panos G. Datskos, "Detection of Anthrax Simulants with Microcalorimetric Spectroscopy: Bacillus subtilis and Bacillus cereus Spores," Appl. Opt. 42, 1757-1762 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. M. Bush, B. H. Abrams, A. Beall, and C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
  2. M. N. Swartz, “Current concepts: recognition and management of anthrax—an update,” New Engl. J. Med. 345, 1621–1626 (2001).
  3. R. C. Liddington, “A molecular full nelson,” Nature (London) 415, 373–374 (2002).
  4. R. Liddington, A. Pannifer, P. Hanna, and R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
  5. A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, and R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
  6. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
  7. N. Munakata, K. Hieda, K. Kobayashi, A. Ito, and T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
  8. L. Y. Santo and R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
  9. B. Maruo and H. Yoshikawa, Bacillus subtilis: Molecular Biology and Industrial Application (Kodansha, Tokyo, 1989).
  10. J. Irudayaraj, H. Yang, and S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
  11. E. Elhanany, R. Barak, M. Fisher, D. Kobiler, and Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
  12. L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, and E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
  13. J. J. Quinlan and P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
  14. P. Weber and J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
  15. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896 (1968).
  16. P. Setlow, Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (American Society for Microbiology, Washington, D.C., 1993).
  17. L. A. Broussard, “Biological agents: weapons of warfare and bioterrorism,” Mol. Diagn. 6, 323–333 (2001).
  18. J. G. Bruno and J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
  19. A. Castro and R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
  20. D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, and A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
  21. P. J. Stopa, “The flow cytometry of Bacillus anthracis spores revisited,” Cytometry 41, 237–244 (2000).
  22. S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
  23. E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, and J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
  24. F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, and J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
  25. D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, and C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
  26. A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, and H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541(Oxford U. Press, Oxford, UK, 1994), pp. 62–68.
  27. R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, and J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
  28. J. E. Katon, “Applications of vibrational microspectroscopy to chemistry,” Vib. Spectrosc. 7, 201–229 (1994).
  29. D. Helm, H. Labischinski, and D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
  30. J. M. Legal, M. Manfait, and T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
  31. D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
  32. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
  33. L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
  34. H. Oberreuter, H. Seiler, and S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).
  35. T. Udelhoven, D. Naumann, and J. Schmitt, “Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria,” Appl. Spectrosc. 54, 1471–1479 (2000).
  36. H. C. van der Mei, D. Naumann, and H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
  37. R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, and D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
  38. P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, and I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
  39. P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
  40. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
  41. J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
  42. Y. Nakagawa, R. Schafer, and H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
  43. R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
  44. E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
  45. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
  46. D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36, 239–298 (2001).
  47. L. Bozec, A. Hammiche, H. M. Pollock, and M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited