OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 10 — Apr. 1, 2003
  • pp: 1779–1787

Radiometric Errors in Complex Fourier Transform Spectrometry

Lawrence A. Sromovsky  »View Author Affiliations


Applied Optics, Vol. 42, Issue 10, pp. 1779-1787 (2003)
http://dx.doi.org/10.1364/AO.42.001779


View Full Text Article

Acrobat PDF (103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation ςR = 2X ×NEP/(ηAΩ√τN), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, ±X is the delay range measured with N samples averaging for a time τ per sample, η is the system optical efficiency, and AΩ is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance ςL2 = ςR2 + ςc2(LhLs)2/(LhLc)2 + ςh2(LsLc)2/(LhLc)2, valid for ςR, ςc, and ςh small compared with LhLc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and ςc and ςh are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

Citation
Lawrence A. Sromovsky, "Radiometric Errors in Complex Fourier Transform Spectrometry," Appl. Opt. 42, 1779-1787 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-10-1779


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy, A. Benz, A. Huber, and M. Mayor, eds. (Geneva Observatory, Sauverny, Switzerland, 1985), pp. 1–61.
  2. H. E. Revercomb, L. A. Sromovsky, P. M. Fry, F. A. Best, and D. D. LaPorte, “Demonstration of imaging Fourier transform spectrometer (FTS) performance for planetary and geostationary Earth observing,” in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 1–10 (2001).
  3. H. E. Revercomb, W. L. Smith, R. O. Knudteson, F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, G. M. Buchholtz, J. F. Short, and H. B. Howell, “AERI—Atmospheric Emitted Radiance Interferometer,” in Eighth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1994), pp. 180–182.
  4. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988).
  5. J.-M. Thériault, “Beam splitter layer emission in Fourier-transform infrared interferometers,” Appl. Opt. 37, 8348–8351 (1998).
  6. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1992).
  7. J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin, New York, 1965).
  8. Research Systems, Inc., IDL Reference Guide (Research Systems, Inc., Boulder, Colo., 1995), Vol. 1.
  9. W. Kaplan, Advanced Mathematics for Engineers (Addison-Wesley, Reading, Mass. 1981), p. 764.
  10. L. Mertz, Transformations in Optics (Wiley, New York, 1965), p. 15.
  11. J. J. Tuma, Engineering Mathematics Handbook, 2nd ed. (McGraw-Hill, New York, 1979), p. 95.
  12. R. A. Hanel, B. J. Conrath, D. E. Jennings, and R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, Cambridge, UK, 1992).
  13. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).
  14. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, San Diego, Calif., 2001).
  15. D. G. Crowe, P. R. Norton, T. Limperis, and J. Mudar, “Detectors,” in Electro Optical Components, W. D. Rogatto, ed., (SPIE, Bellingham, Wash., 1993), pp. 175–283.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited