OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 10 — Apr. 1, 2003
  • pp: 1833–1838

On-Line Reoptimization of Filter Designs for Multivariate Optical Elements

Frederick G. Haibach, Ashley E. Greer, Maria V. Schiza, Ryan J. Priore, Olusola O. Soyemi, and Michael L. Myrick  »View Author Affiliations


Applied Optics, Vol. 42, Issue 10, pp. 1833-1838 (2003)
http://dx.doi.org/10.1364/AO.42.001833


View Full Text Article

Acrobat PDF (107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An automated method for producing multivariate optical element (MOE) interference filters that are robust to errors in the reactive magnetron sputtering process is described. Reactive magnetron sputtering produces films of excellent thickness and uniformity. However, small changes in the thickness of individual layers can have severe adverse effects on the predictive ability of the MOE. Adaptive reoptimization of the filter design during the deposition process can maintain the predictive ability of the final filter by changing the thickness of the undeposited layers to compensate for the errors in deposition. The merit function used, the standard error of calibration, is fundamentally different from the standard spectrum matching. This new merit function allows large changes in the transmission spectrum of the filter to maintain performance.

© 2003 Optical Society of America

OCIS Codes
(000.1570) General : Chemistry
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(200.4560) Optics in computing : Optical data processing
(310.0310) Thin films : Thin films

Citation
Frederick G. Haibach, Ashley E. Greer, Maria V. Schiza, Ryan J. Priore, Olusola O. Soyemi, and Michael L. Myrick, "On-Line Reoptimization of Filter Designs for Multivariate Optical Elements," Appl. Opt. 42, 1833-1838 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-10-1833


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Martens and T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).
  2. K. R. Beebe, R. J. Pell, and M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).
  3. A. G. Ryabenko and G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).
  4. S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986).
  5. M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
  6. M. L. Myrick, O. Soyemi, H. Li, L. Zhang, and D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
  7. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
  8. O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, and M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour and J. T. Rantala, eds., Proc. SPIE 4284, 17–28 (2001).
  9. D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, and M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh and R. L. Spellicy, eds., Proc. SPIE 4199, 105–114 (2001).
  10. M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, and P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
  11. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
  12. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
  13. M. Myrick, “Multivariate optical elements simplify spectroscopy,” Laser Focus World 38, 91–94 (2002).
  14. M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, and R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen and R. L. Spellicy, eds., Proc. SPIE 4574, 208–215 (2002).
  15. A. M. C. Prakash, C. M. Stellman, and K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
  16. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
  17. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
  18. B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
  19. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
  20. J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  21. T. F. Coleman, M. A. Branch, and A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited