OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2021–2030

Size Distributions of Nanoscaled Particles and Gas Temperatures from Time-Resolved Laser-Induced-Incandescence Measurements

Thilo Lehre, Beate Jungfleisch, Rainer Suntz, and Henning Bockhorn  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2021-2030 (2003)
http://dx.doi.org/10.1364/AO.42.002021


View Full Text Article

Acrobat PDF (211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced-incandescence (LII) signal decays are measured in sooting premixed atmospheric and low-pressure flames. Soot particle temperatures are obtained from LII signals measured at two wavelengths. Soot particle size distributions P(r) and flame temperatures T are measured spatially resolved by independent techniques. Heat and mass transfer kinetics of the LII process are determined from measured soot particle temperatures, flame temperatures, and particle sizes. Uncertainties of current LII models are attributed to processes during the absorption of the laser pulse. Implications for LII experiments are made in order to obtain primary soot particle sizes. Soot particle size distributions and flame temperatures are assessed from measured particle temperature decays by use of multi-D nonlinear regression.

© 2003 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(190.4870) Nonlinear optics : Photothermal effects
(280.1100) Remote sensing and sensors : Aerosol detection
(300.0300) Spectroscopy : Spectroscopy

Citation
Thilo Lehre, Beate Jungfleisch, Rainer Suntz, and Henning Bockhorn, "Size Distributions of Nanoscaled Particles and Gas Temperatures from Time-Resolved Laser-Induced-Incandescence Measurements," Appl. Opt. 42, 2021-2030 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2021


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Wåhlin, F. Palmgren, and R. Van Dingenen, “Experimental studies of ultrafine particles in streets and the relationship to traffic,” Atmos. Environ. 35, 63–69 (2001).
  2. K. J. Nikula, G. L. Finch, R. A. Westhouse, J. C. Seagrave, and J. L. Mauderly, “Progress in understanding the toxicity of gasoline and Diesel engine exhaust emissions,” SAE 1999–01–2250 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  3. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
  4. N. P. Tait and D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
  5. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
  6. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 45–57.
  7. B. Mewes and J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
  8. D. R. Snelling, G. I. Smallwood, I. G. Campbell, J. E. Medlock, and Ö. L. Gülder, “Development and application of laser induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of Advanced Non-Intrusive Instrumentation for Propulsion Engines (The Advisory Group for Aerospace Research and Development Neuilly, France, 1997), CP-598, pp. 23–21, 23–29.
  9. S. Will, S. Schraml, K. Bader, and A. Leipertz, “Performance characteristics of soot primary size particle measurements by time-resolved laser induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
  10. R. L. Vander Wal, T. M. Ticich, and J. R. West, Jr., “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
  11. A. V. Filippov, M. W. Markus, and P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
  12. G. J. Smallwood, D. R. Snelling, F. Liu, and ¨O. L. Gülder “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
  13. D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: predication of the excitation intensity,” in Proceedings of 34th National Heat Transfer Conference (American Society of Mechanical Engineers, New York, 2000), NHTC2000–12132, pp. 79–87.
  14. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (Tire-LII),” Combust. Flame 120, 439–450 (2000).
  15. Ü. Ö. Köylü and G. M. Faeth, “Spectral extinction coefficients of soot aggregates from turbulent diffusion flames,” ASME J. Heat Transfer 118, 415–421 (1996).
  16. S. C. Lee and C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
  17. W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 161–169 (1969).
  18. B. J. Stagg and T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25° to 600 °C,” Combust. Flame 94, 381–396 (1993).
  19. E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938).
  20. J. R. Burke and D. J. Hollenbach, “The gas-grain interaction in the interstellar medium: thermal accommodation and trapping,” Astrophys. J. 265, 223–234 (1982).
  21. B. J. McCoy and C. Y. Cha, “Transport phenomena in the rarefied gas transition regime,” Chem. Eng. Sci. 29, 381–388 (1974).
  22. M. Kerker, The Scattering of Light and other Electromagnetic Radiation (Academic, New York, 1969).
  23. H. Bockhorn, F. Fetting, G. Wannemacher, and H. W. Wenz, “Optical studies of soot particle growth in hydrocarbon oxygen flames,” in 19th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1982), pp. 1413–1420.
  24. H. Bockhorn, F. Fetting, A. Heddrich, U. Meyer, and G. Wannemacher, “Particle sizing of soot in flat premixed hydrocarbon oxygen flames by light scattering,” J. Aerosol Sci. 19, 591–602 (1988).
  25. U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbon oxygen flames,” in 22nd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 343–352.
  26. F. Mauss, T. Schäfer, and H. Bockhorn, “Inception and growth of soot particles in dependence on the surrounding gas phase,” Combust. Flame 99, 697–705 (1994).
  27. H. Geitlinger, B. Jungfleisch, M. Marquardt, Th. Streibel, R. Suntz, and H. Bockhorn, “Two-dimensional detection of soot volume fractions, particle number densities and particle radii in turbulent diffusion flames,” Environ. Comb. Technol. 2, 169–190 (2001).
  28. H. Geitlinger, Th. Streibel, R. Suntz, and H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1613–1621.
  29. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, and H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in 26th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
  30. P.-E. Bengtsson and M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
  31. R. L. Vander Wal, Z. Zhou, and M. Y. Choi, “Laser-induced calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
  32. R. C. Shaddix, J. E. Harrington, and K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
  33. T. P. Jenkins and R. K. Hanson, “Soot pyrometry by using mae,” Combust. Flame 126, 1669–1679 (2001).
  34. Landolt-Börnstein, 6th ed. II2a (Springer-Verlag, Berlin, 1960), pp. 1–30.
  35. H. R. Leider, O. H. Krikorian, and D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
  36. R. J. Thorn and G. H. Winslow, “Vaporization coefficient of graphite and composition of the equilibrium vapor,” J. Chem. Phys. 26, 186–196 (1957).
  37. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1986).
  38. H. Bockhorn, ed., Soot Formation in Combustion (Springer, Berlin, 1994).
  39. R. L. Vander Wal and M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
  40. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
  41. H. Bockhorn, B. Jungfleisch, T. Lehre, and R. Suntz, “Bestimmung von Partikelgrössenverteilungen und Gastemperaturen in laminaren und turbulenten Verbrennungssystemen durch Messung des zeitlichen Abfalls der laserinduzierten Inkandeszenz,” VDI-Berichte 1629, 435–440 (2001).
  42. T. Lehre, H. Bockhorn, B. Jungfleisch, and R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere (to be published).
  43. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, Th. Streibel, and R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 15, 3780–3794 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited