OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2052–2062

Laser-Induced Incandescence for Soot Diagnostics at High Pressures

Max Hofmann, Wolfgang G. Bessler, Christof Schulz, and Helga Jander  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2052-2062 (2003)
http://dx.doi.org/10.1364/AO.42.002052


View Full Text Article

Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of pressure on laser-induced incandescence (LII) is investigated systematically in premixed, laminar, sooting ethylene/air flames at 1–15 bar with wavelength-, laser fluence-, and time-resolved detection. In the investigated pressure range the LII signal decay rate is proportional to pressure. This observation is consistent with the prediction of heat-transfer models in the free-molecular regime. Pressure does not systematically affect the relationship between LII signal and laser fluence. With appropriate detection timing the pressure influence on LII signal’s proportionality to soot volume fraction obtained by extinction measurements is only minor compared with the variation observed in different flames at fixed pressures. The implications for particle sizing and soot volume fraction measurements using LII techniques at elevated pressures are discussed.

© 2003 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(290.5850) Scattering : Scattering, particles

Citation
Max Hofmann, Wolfgang G. Bessler, Christof Schulz, and Helga Jander, "Laser-Induced Incandescence for Soot Diagnostics at High Pressures," Appl. Opt. 42, 2052-2062 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2052


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
  2. D. J. Bryce, N. Ladommatos, and H. Zhao, “Quantitative investigation of soot distribution by laser-induced incandescence,” Appl. Opt. 39, 5012–5022 (2000).
  3. C. Shaddix and K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
  4. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, and H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).
  5. R. L. Vander Wal and D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
  6. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, and Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000–01–1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  7. S. Schraml, S. Will, and A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000–01–2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  8. R. L. Vander Wal, T. M. Ticich, and J. R. West, Jr., “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
  9. B. Axelsson, R. Collin, and P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
  10. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
  11. S. Will, S. Schraml, and A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
  12. S. Will, S. Schraml, and A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).
  13. S. Will, S. Schraml, K. Bader, and A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
  14. R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
  15. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
  16. R. L. Vander Wal and K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
  17. A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
  18. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984~).
  19. B. Mewes and J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
  20. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  21. G. J. Smallwood, D. R. Snelling, F. Liu, and Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
  22. J. E. Dec, “Soot distribution in a D.I. Diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Tech. Paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).
  23. J. E. Dec and C. Espey, “Ignition and early soot formation in a DI Diesel engine using multiple 2-D imaging diagnostics,” SAE Tech. Paper 950456 (Society of Automotive Engineers, Warrendale, Pa., 1995).
  24. G. Wiltafsky, W. Stolz, J. Köhler, and C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  25. J. Pinson, D. L. Mitchell, R. J. Santoro, and T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  26. K. Inagaki, S. Takasu, and K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999–01–0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  27. G. Bruneaux, D. Verhoeven, and T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999–01–3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  28. D. Woiki, A. Giesen, and P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
  29. R. Starke and P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
  30. B. F. Kock, T. Eckhardt, and P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).
  31. P. Roth and A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
  32. N. P. Tait and D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
  33. D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.
  34. D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, and Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.
  35. R. T. Wainner, J. M. Seitzman, and S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
  36. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999–01–3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  37. H. Bockhorn, B. Jungfleisch, T. Lehre, and R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.
  38. H. R. Leider, O. H. Krikorian, and D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
  39. M. Williams and S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, UK, 1991).
  40. A. V. Filippov and D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
  41. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  42. K. C. Smyth and C. R. Shaddix, “The elusive history of m̃ = 1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
  43. H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
  44. H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).
  45. B. Axelsson, R. Collin, and P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
  46. R. L. Vander Wal and T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
  47. R. L. Vander Wal, Z. Zhou, and M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
  48. D. R. Snelling, G. J. Smallwood, ¨O. L. Gülder, and F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.
  49. S. Hanisch, H. Jander, T. Pape, and H. Gg. Wagner, “Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).
  50. P. E. Bengtsson and M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
  51. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
  52. J. R. McDonald, A. P. Baronavski, and V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
  53. R. Reid, J. Prausnitz, and B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).
  54. H. Mätzing and H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).
  55. F. Cignoli, S. Benecchi, and G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
  56. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
  57. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited