OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2119–2126

Fiber-Amplifier-Enhanced Photoacoustic Spectroscopy with Near-Infrared Tunable Diode Lasers

Michael E. Webber, Michael Pushkarsky, and C. Kumar N. Patel  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2119-2126 (2003)
http://dx.doi.org/10.1364/AO.42.002119


View Full Text Article

Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach to wavelength-modulation photoacoustic spectroscopy is reported, which incorporates diode lasers in the near infrared and optical fiber amplifiers to enhance sensitivity. We demonstrate the technique with ammonia detection, yielding a sensitivity limit less than 6 parts in 109, by interrogating a transition near 1532 nm with 500 mW of output power from the fiber amplifier, an optical pathlength of 18.4 cm, and an integration time constant of 10 s. This sensitivity is 15 times better than in prior published results for detecting ammonia with near-infrared diode lasers. The normalized minimum detectable fractional optical density, αminl, is 1.8 × 10−8; the minimum detectable absorption coefficient, αmin, is 9.5 × 10−10 cm−1; and the minimum detectable absorption coefficient normalized by power and bandwidth is 1.5 × 10−9 W cm−1/√Hz. These measurements represent what we believe to be the first use of fiber amplifiers to enhance photoacoustic spectroscopy, and this technique is applicable to all other species that fall within the gain curves of optical fiber amplifiers.

© 2003 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.3420) Remote sensing and sensors : Laser sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6430) Spectroscopy : Spectroscopy, photothermal

Citation
Michael E. Webber, Michael Pushkarsky, and C. Kumar N. Patel, "Fiber-Amplifier-Enhanced Photoacoustic Spectroscopy with Near-Infrared Tunable Diode Lasers," Appl. Opt. 42, 2119-2126 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2119


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4901–4910 (2001).
  2. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
  3. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
  4. M. Feher, J. Jian, J. P. Maier, and A. Miklos, “Optoacoustic trace-gas monitoring with near-infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994).
  5. A. Miklos and M. Feher, “Optoacoustic detection with near-infrared diode lasers: trace gases and short-lived molecules,” Infrared Phys. Technol. 37, 21–27 (1996).
  6. S. Schafer, M. Mashni, J. Sneider, A. Miklos, P. Hess, H. Pitz, K.-U. Pleban, and V. Ebert, “Sensitive detection of methane with a 1.65 μm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
  7. Z. Bozoki, J. Sneider, Z. Gingl, A. Mohacsi, M. Szakll, Z. Bor, and G. Szabo, “A high-sensitivity, near-infrared tunable-diode-laser-based photoacoustic water-vapour-detection system for automated operation,” Meas. Sci. Technol. 10, 999–1003 (1999).
  8. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Gaillargeon, A. L. Hutchinson, and A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
  9. A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, “Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63-μm diode laser,” Appl. Phys. B 74, 273–278 (2002).
  10. D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, “Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers,” Opt. Lett. 26, 887–889 (2001).
  11. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. 98, 4617–4621 (2001).
  12. P. Hess, ed., Topics in Current Physics: Photoacoustic, Photothermal and Photochemical Processes in Gases (Springer-Verlag, Berlin, 1989).
  13. P. Repond and M. W. Sigrist, “Photoacoustic spectroscopy on trace gases with continuously tunable CO2 laser,” Appl. Opt. 35, 4065–4085 (1996).
  14. A. Miklos and P. Hess, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
  15. S. Schafer, A. Miklos, and P. Hess, “Quantitative signal analysis in pulsed resonant photoacoustics,” Appl. Opt. 36, 3202–3211 (1997).
  16. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, Berlin, 1996).
  17. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  18. J. Henningsen and N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
  19. F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
  20. S.-I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A 19, 477–484 (2001).
  21. P. W. France, ed., Optical Fibre Lasers and Amplifiers (CRC Press, Boca Raton, Fla., 1991).
  22. D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39, 4444–4450 (2000).
  23. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly-sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
  24. M. E. Webber, D. S. Baer, and R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
  25. L. S. Rothmann, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 710 (1998).
  26. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
  27. J. Wang, M. Maiorov, D. S. Baer, D. Z. Barbuzov, J. C. Connolly, and R. K. Hanson, “In-situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
  28. A. Schmohl, A. Miklos, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers,” Appl. Opt. 41, 1815–1823 (2002).
  29. R. Peeters, G. Berden, A. Apituley, and G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
  30. D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74, 85–93 (2002).
  31. R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4387–4394 (2001).
  32. “High resolution wavelength calibration reference for 1510 nm–1540 nm acetylene 12C2H2,” National Institute of Standards and Technology, Certificate, Standard Reference Material 2517a, December 11, 2000.
  33. N. Jacquinet-Husson, E. Arie, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Cham-pion, A. Chedin, A. Chrusin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrie, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvili, J.-M. Hartmann, J. C. Hilico, J. Hillman, G. Lefevre, E. Lellouch, S. N. Mikhailenko, O. V. Naumenko, V. Nemtchinov, D. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, V. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, and M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205–254 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited