OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2127–2131

Fourier-Transform Laser Spectroscopy

Kevin L. McNesby and Andrzej W. Miziolek  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2127-2131 (2003)
http://dx.doi.org/10.1364/AO.42.002127


View Full Text Article

Acrobat PDF (97 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of microphotonic sensors based on Fourier-transform laser spectroscopy (FT-LS) is discussed. The application demonstrated is for measurement of vapors from the hydrocarbon fuels JP-8, diesel fuel, and gasoline. The two-laser prototype FT-LS sensor used for our research employs distributed-feedback lasers in the near-infrared spectral region (1.3- and 1.7-μm wavelength). An extension of this research to multilaser arrays is discussed. We believe that this is the first measurement of middle-distillate fuel-vapor concentrations using this optical mixing technique.

© 2003 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Citation
Kevin L. McNesby and Andrzej W. Miziolek, "Fourier-Transform Laser Spectroscopy," Appl. Opt. 42, 2127-2131 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2127


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. M. Kuchta and R. G. Clodfelter, “Aircraft mishap fire pattern investigations. Final Rep.” APWAL-TR-85–2057 (Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio 1985).
  2. M. R. Baer and R. J. Gross, “Extended modeling studies of the TWA 800 center-wing fuel tank explosion,” Sandia National Laboratories Report SAND2000–0445 (Sandia National Laboratories, Albuquerque, N. Mex., 2000).
  3. J. Shepherd, “Learning from a tragedy: explosions and Flight 800,” Eng. Sci. 2, 18–29 (1998).
  4. K. L. McNesby, R. G. Daniel, S. H. Modiano, and A. W. Miziolek, “Optical measurement of toxic gases produced during firefighting using halons,” Appl. Spectrosc. 51, 678–683 (1997).
  5. K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. Hoke, and C. S. Miser, “Diode laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
  6. K. L. McNesby, R. T. Wainner, R. G. Daniel, R. R. Skaggs, J. B. Morris, A. W. Miziolek, W. M. Jackson, and I. A. McLaren, “Detection and measurement of middle-distillate fuel vapors by use of tunable diode lasers,” Appl. Opt. 40, 840–845 (2001).
  7. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
  8. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
  9. J. Yu, P. Rambaldi, and J. P. Wolf, “Dual-wavelength diode-seeded Ti:sapphire laser for differential absorption lidar applications,” Appl. Opt. 36, 6864–6868 (1997).
  10. J. Wormhoudt, ed., Infrared Methods for Gaseous Measurements-Theory and Practice (Marcel-Dekker, New York, 1985).
  11. D. W. Naegeli and K. H. Childress, “Lower explosion limits and compositions of middle distillate fuel vapors,” in Proceedings of the Fall Meeting of the Society of Automotive Engineers, (Society of Automotive Engineers, Warrendale, Pa., 1998), paper 982485, pp. 1–7.
  12. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
  13. I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
  14. G. Hertzberg, Infrared and Raman Spectra (Van Nostrand Rheinhold, New York, 1945).
  15. X. Zhu and D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997).
  16. K. L. McNesby, R. T. Wainner, R. G. Daniel, A. W. Miziolek, W. M. Jackson, and I. A. McLaren, “High-sensitivity laser absorption measurements of broadband absorbers in the near-infrared spectral region,” Appl. Opt. 39, 5006–5011 (2000).
  17. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, New York, 1986).
  18. J. R. Ferraro and L. J. Basile, Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems (Academic, New York, 1978), Vols. 1–3; also see Ref. 15.
  19. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Math. Comput. 19, 297–301 (1965).
  20. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris, V. Benner, M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469, (1992).
  21. X. Zhu and D. T. Cassidy, “Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities,” Appl. Opt. 35, 4689–4693 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited