OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2140–2154

Retrieval of Stratospheric Aerosol Size and Composition Information from Solar Infrared Transmission Spectra

Helen M. Steele, Annmarie Eldering, Bhaswar Sen, Geoffrey C. Toon, Franklin P. Mills, and Brian H. Kahn  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2140-2154 (2003)
http://dx.doi.org/10.1364/AO.42.002140


View Full Text Article

Acrobat PDF (2800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The MkIV instrument employs two different detectors, a HgCdTe photoconductor for 650–1850 cm−1 and an InSb photodiode for 1850–5650 cm−1, to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NOy species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 μm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval of both aerosol size and composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70–75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.

© 2003 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.2200) Scattering : Extinction

Citation
Helen M. Steele, Annmarie Eldering, Bhaswar Sen, Geoffrey C. Toon, Franklin P. Mills, and Brian H. Kahn, "Retrieval of Stratospheric Aerosol Size and Composition Information from Solar Infrared Transmission Spectra," Appl. Opt. 42, 2140-2154 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2140

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited