OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2140–2154

Retrieval of stratospheric aerosol size and composition information from solar infrared transmission spectra

Helen M. Steele, Annmarie Eldering, Bhaswar Sen, Geoffrey C. Toon, Franklin P. Mills, and Brian H. Kahn  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2140-2154 (2003)
http://dx.doi.org/10.1364/AO.42.002140


View Full Text Article

Enhanced HTML    Acrobat PDF (2800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The MkIV instrument employs two different detectors, a HgCdTe photoconductor for 650–1850 cm-1 and an InSb photodiode for 1850–5650 cm-1, to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NO y species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 μm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval of both aerosol size and composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70–75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.

© 2003 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.2200) Scattering : Extinction

History
Original Manuscript: August 22, 2002
Revised Manuscript: December 19, 2002
Published: April 20, 2003

Citation
Helen M. Steele, Annmarie Eldering, Bhaswar Sen, Geoffrey C. Toon, Franklin P. Mills, and Brian H. Kahn, "Retrieval of stratospheric aerosol size and composition information from solar infrared transmission spectra," Appl. Opt. 42, 2140-2154 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Intergovernmental Panel on Climate Change, Contribution of Working Group 1 to the IPCC Second Assessment ReportClimate Change 1995 (IPCC, Geneva, Switzerland, 1995).
  2. M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, “Satellite studies of the stratospheric aerosol,” Bull. Am. Meteorol. Soc. 60, 1038–1046 (1979). [CrossRef]
  3. M. P. McCormick, “SAGE II: an overview,” Adv. Space Res. 7, 219–226 (1987). [CrossRef]
  4. A. E. Roche, J. B. Kumer, J. L. Mergenthaler, G. A. Ely, W. G. Uplinger, J. F. Potter, T. C. James, L. W. Sterritt, “The Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS: experiment description and performance,” J. Geophys. Res. 98, 10763–10775 (1993). [CrossRef]
  5. F. W. Taylor, C. D. Rodgers, J. G. Whitney, S. T. Werrett, J. J. Barnett, G. D. Peskett, P. Venters, J. Ballard, C. W. P. Palmer, R. J. Knight, P. Morris, T. Nightingale, A. Dudhia, “Remote sensing of atmospheric structure and composition by pressure modulator radiometry from space: the ISAMS experiment on UARS,” J. Geophys. Res. 98, 10799–10814 (1993). [CrossRef]
  6. W. Glaccum, R. L. Lucke, R. M. Bevilacqua, E. P. Shettle, J. S. Hornstein, D. T. Chen, J. D. Lumpe, S. S. Krigman, D. J. Debrestian, M. D. Fromm, F. Dalaudier, E. Chassefiere, C. Deniel, C. E. Randall, D. W. Rusch, J. J. Olivero, C. Brogniez, J. Lenoble, R. Kremer, “The polar ozone and aerosol measurement instrument,” J. Geophys. Res. 101, 14479–14487 (1996). [CrossRef]
  7. R. L. Lucke, D. R. Korwan, R. M. Bevilacqua, J. S. Hornstein, E. P. Shettle, D. T. Chen, M. Daehler, J. D. Lumpe, M. D. Fromm, D. Debrestian, B. Neff, M. Squire, G. Konig-Langlo, J. Davies, “The Polar Ozone and Aerosol Measurement (POAM) III instrument and early validation results,” J. Geophys. Res. 104, 18785–18799 (1999). [CrossRef]
  8. M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, “High-latitude stratospheric aerosols measured by the SAM II satellite system in 1978 and 1979,” Science 214, 328–331 (1981). [CrossRef] [PubMed]
  9. M. H. Hitchman, M. McKay, C. R. Trepte, “A climatology of stratospheric aerosol,” J. Geophys. Res. 99, 20689–20700 (1994). [CrossRef]
  10. L. W. Thomason, L. R. Poole, T. Deshler, “A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994,” J. Geophys. Res. 102, 8967–8976 (1997). [CrossRef]
  11. A. Lambert, R. G. Grainger, C. D. Rodgers, F. W. Taylor, J. L. Mergenthaler, J. B. Kumer, S. T. Massie, “Global evolution of the Mt. Pinatubo volcanic aerosols observed by the infrared limb-sounding instruments CLAES and ISAMS on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 102, 1495–1512 (1997). [CrossRef]
  12. C. E. Randall, D. W. Rusch, J. J. Olivera, R. M. Bevilacqua, L. R. Poole, J. D. Lumpe, M. D. Fromm, K. W. Hoppel, J. H. Hornstein, E. P. Shettle, “An overview of POAM II aerosol measurements at 1.06 μm,” Geophys. Res. Lett. 23, 3195–3198 (1996). [CrossRef]
  13. M. R. Gunson, M. M. Abbas, M. C. Abrams, M. Allen, L. R. Brown, T. L. Brown, A. Y. Chang, A. Goldman, F. W. Irion, L. L. Lowes, E. Mahieu, G. L. Manney, H. A. Michelsen, M. J. Newchurch, C. P. Rinsland, R. J. Salawich, G. P. Stiller, G. C. Toon, Y. L. Yung, R. Zander, “The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: deployment on the ATLAS Space Shuttle missions,” Geophys. Res. Lett. 23, 2333–2339 (1996). [CrossRef]
  14. G. C. Toon, J.-F. Blavier, J. N. Solario, J. T. Szeto, “Airborne observations of the 1992 Arctic winter stratosphere by FTIR solar absorption spectroscopy,” Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 457–467 (1992). [CrossRef]
  15. G. C. Toon, J.-F. Blavier, J. N. Solario, J. T. Szeto, “Airborne observations of the composition of the 1992 tropical stratosphere by FTIR solar absorption spectrometry,” Geophys. Res. Lett. 20, 2503–2506 (1993). [CrossRef]
  16. G. C. Toon, J.-F. Blavier, J. T. Szeto, “Latitude variations of stratospheric trace gases,” Geophys. Res. Lett. 21, 2599–2602 (1994). [CrossRef]
  17. G. C. Toon, “The MkIV interferometer,” Opt. Photon. News 2, 19–21 (1991). [CrossRef]
  18. H. M. Steele, R. P. Turco, “Separation of aerosol and gas components in the Halogen Occultation Experiment and the Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements: implications for SAGE II ozone concentrations and trends,” J. Geophys. Res. 102, 19665–19681 (1997). [CrossRef]
  19. W. P. Chu, M. P. McCormick, “Inversion of stratospheric aerosol and gaseous constituents from spacecraft solar extinction data in the 0.38–1.0-μm wavelength region,” Appl. Opt. 18, 1404–1413 (1979). [CrossRef] [PubMed]
  20. W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8339–8351 (1989). [CrossRef]
  21. J. D. Lumpe, R. M. Bevilacqua, K. W. Hoppel, S. S. Krigman, D. L. Kriebel, D. J. Debrestian, C. E. Randall, D. W. Rusch, C. Brogniez, R. Ramananahérisoa, E. P. Shettle, J. J. Olivera, J. Lenoble, P. Pruvost, “POAM II retrieval algorithm and error analysis,” J. Geophys. Res. 102, 23593–23614 (1997). [CrossRef]
  22. D. Fussen, “A critical analysis of the Stratospheric Aerosol and Gas Experiment II spectral inversion algorithm,” J. Geophys. Res. 103, 8455–8464 (1998). [CrossRef]
  23. D. W. Rusch, C. E. Randall, M. T. Callan, M. Horanyi, R. T. Clancy, S. C. Solomon, S. J. Oltmans, B. J. Johnson, U. Koehler, H. Claude, D. DeMuer, “A new inversion for Stratospheric Aerosol and Gas Experiment II data,” J. Geophys. Res. 103D, 8465–8475 (1998). [CrossRef]
  24. M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993). [CrossRef]
  25. M. E. Hervig, J. M. Russell, L. L. Gordley, J. Daniels, S. R. Drayson, J. H. Park, “Aerosol effects and corrections in the Halogen Occultation Experiment,” J. Geophys. Res. 100, 1067–1079 (1995). [CrossRef]
  26. G. C. Toon, C. B. Farmer, L. L. Lowes, P. W. Schaper, J.-F. Blavier, R. H. Norton, “Infrared aircraft measurements of stratospheric composition over Antarctica during September 1987,” J. Geophys. Res. 94, 16571–16596 (1989). [CrossRef]
  27. M. Carlotti, “Global-fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988). [CrossRef] [PubMed]
  28. H. Grassl, “Determination of aerosol size distributions from spectral attenuation measurements,” Appl. Opt. 10, 2534–2538 (1971). [CrossRef] [PubMed]
  29. G. K. Yue, A. Deepak, “Retrieval of stratospheric aerosol size distribution from atmospheric extinction of solar radiation at two wavelengths,” Appl. Opt. 22, 1639–1645 (1983). [CrossRef] [PubMed]
  30. P.-H. Wang, M. P. McCormick, T. J. Swissler, M. T. Osborn, W. H. Fuller, G. K. Yue, “Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements,” J. Geophys. Res. 94, 8435–8446 (1989). [CrossRef]
  31. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  32. P.-H. Wang, G. S. Kent, M. P. McCormick, L. W. Thomason, G. K. Yue, “Retrieval analysis of aerosol-size distribution with simulated extinction measurements at SAGE III wavelengths,” Appl. Opt. 35, 433–440 (1996). [CrossRef] [PubMed]
  33. H. M. Steele, J. Lumpe, R. P. Turco, R. Bevilacqua, S. T. Massie, “Retrieval of aerosol surface area and volume densities from extinction measurements: application to POAM II and SAGE II,” J. Geophys. Res. 104, 9325–9336 (1999). [CrossRef]
  34. L. W. Thomason, L. R. Poole, “Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes,” J. Geophys. Res. 98, 23002–23012 (1993). [CrossRef]
  35. R. G. Grainger, A. Lambert, C. D. Rodgers, F. W. Taylor, T. Deshler, “Stratospheric aerosol effective radius, surface area and volume estimated from infrared measurements,” J. Geophys. Res. 100, 16507–16518 (1995). [CrossRef]
  36. S. T. Massie, D. Baumgardner, J. E. Dye, “Estimation of polar stratospheric cloud volume and area densities from UARS, SAM II, and POAM II extinction data,” J. Geophys. Res. 103, 5773–5783 (1998). [CrossRef]
  37. M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998). [CrossRef]
  38. M. E. Hervig, T. Deshler, “Stratospheric aerosol surface area and volume inferred from HALOE, CLAES, and ILAS measurements,” J. Geophys. Res. 103, 25345–25352 (1998). [CrossRef]
  39. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid: application to the clouds of Venus?” Appl. Opt. 14, 208–219 (1975). [PubMed]
  40. H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulfuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981). [CrossRef]
  41. P. B. Russell, P. Hamill, “Spatial variation of stratospheric aerosol acidity and model refractive index: implications of recent results,” J. Geophys. Res. 41, 1781–1790 (1984).
  42. G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994). [CrossRef]
  43. M. A. Tolbert, “Sulfate aerosols and polar stratospheric cloud formation,” Science 264, 527–528 (1994). [CrossRef] [PubMed]
  44. E. M. Patterson, D. A. Gillette, “Commonalities in measured size distributions for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977). [CrossRef]
  45. O. B. Toon, J. Pollack, “A global average model of atmospheric aerosols for radiative transfer calculations,” J. Appl. Meteorol. 15, 225–243 (1976). [CrossRef]
  46. F. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972). [CrossRef] [PubMed]
  47. G. d’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987). [CrossRef]
  48. H. M. Steele, P. Hamill, R. P. Turco, “Tropospheric aerosols: humidity dependence of light extinction,” in Hygroscopic Aerosols, L. H. Ruhnke, A. Deepak, eds., (Deepak, Hampton, Va., 1984), pp. 229–245.
  49. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994). [CrossRef]
  50. A. Eldering, F. W. Irion, A. Y. Chang, M. R. Gunson, F. P. Mills, H. M. Steele, “Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology,” Appl. Opt. 40, 3082–3091 (2001). [CrossRef]
  51. C. P. Rinsland, M. R. Gunson, P.-H. Wang, R. F. Arduini, B. A. Baum, P. Minnis, A. Goldman, M. C. Abrams, R. Zander, E. Mahieu, R. J. Salawitch, H. A. Michelsen, F. W. Irion, M. J. Newchurch, “ATMOS/ATLAS3 infrared profile measurements of clouds in the tropical and subtropical upper troposphere,” J. Quant. Spectrosc. Radiat. Transfer 60, 903–919 (1998). [CrossRef]
  52. B. H. Kahn, A. Eldering, F. W. Irion, F. P. Mills, B. Sen, M. R. Gunson, “Cloud identification in Atmospheric Trace Molecule Spectroscopy infrared occultation measurements,” Appl. Opt. 41, 2768–2780 (2002). [CrossRef] [PubMed]
  53. U. M. Biermann, B. P. Luo, T. Peter, “Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3 and H2O in the mid infrared at atmospheric temperatures,” J. Phys. Chem. A 104, 783–793 (2000). [CrossRef]
  54. S. Kinne, O. B. Toon, G. C. Toon, C. B. Farmer, E. V. Browell, M. P. McCormick, “Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra,” J. Geophys. Res. 94, 16481–16491 (1989). [CrossRef]
  55. G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998). [CrossRef]
  56. R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994). [CrossRef]
  57. S. T. Massie, T. Deshler, G. E. Thomas, J. L. Mergenthaler, J. M. Russell, “Evolution of the infrared properties of the Mount Pinatubo aerosol cloud over Laramie, Wyoming,” J. Geophys. Res. 101, 23007–23019 (1996). [CrossRef]
  58. J. M. Rosen, “The boiling point of stratospheric aerosol,” J. Appl. Meteorol. 18, 1044–1046 (1971). [CrossRef]
  59. D. J. Hofmann, J. M. Rosen, “Measurement of sulfuric acid weight percent in the stratospheric aerosol from the El Chichon eruption,” Geofisica Internacional 23, 309–320 (1984).
  60. P. B. Russell, J. M. Livingston, R. F. Pueschel, J. J. Hughes, J. B. Pollack, S. L. Brooks, P. Hamill, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18745–18764 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited