OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2166–2173

Development of a Gallium-Doped Germanium Far-Infrared Photoconductor Direct Hybrid Two-Dimensional Array

Mikio Fujiwara, Takanori Hirao, Mitsunobu Kawada, Hiroshi Shibai, Shuji Matsuura, Hidehiro Kaneda, Mikhail Patrashin, and Takao Nakagawa  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2166-2173 (2003)
http://dx.doi.org/10.1364/AO.42.002166


View Full Text Article

Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To our knowledge, we are the first to successfully report a direct hybrid two-dimensional (2D) detector array in the far-infrared region. Gallium-doped germanium (Ge:Ga) has been used extensively to produce sensitive far-infrared detectors with a cutoff wavelength of ≅110 μm (2.7 THz). It is widely used in the fields of astronomy and molecular and solid spectroscopy. However, Ge:Ga photoconductors must be cooled below 4.2 K to reduce thermal noise, and this operating condition makes it difficult to develop a large format array because of the need for a warm amplifier. Development of Ge:Ga photoconductor arrays to take 2D terahertz images is now an important target in such research fields as space astronomy. We present the design of a 20 × 3 Ge:Ga far-infrared photoconductor array directly hybridized to a Si p-type metal-oxide-semiconductor readout integrated circuit using indium-bump technology. The main obstacles in creating this 2D array were (1) fabricating a monolithic Ge:Ga 2D array with a longitudinal configuration, (2) developing a cryogenic capacitive transimpedance amplifier, and (3) developing a technology for connecting the detector to the electronics. With this technology, a prototype Ge:Ga photoconductor with a direct hybrid structure has shown a responsivity as high as 14.6 A/W and a minimum detectable power of 5.6 × 10−17 W for an integration time of 0.14 s when it was cooled to 2.1 K. Its noise is limited by the readout circuit with 20 μV/Hz1/2 at 1 Hz. Vibration and cooling tests demonstrated that this direct hybrid structure is strong enough for spaceborne instruments. This detector array will be installed on the Japanese infrared satellite ASTRO-F.

© 2003 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(040.3060) Detectors : Infrared
(040.5150) Detectors : Photoconductivity
(040.5160) Detectors : Photodetectors

Citation
Mikio Fujiwara, Takanori Hirao, Mitsunobu Kawada, Hiroshi Shibai, Shuji Matsuura, Hidehiro Kaneda, Mikhail Patrashin, and Takao Nakagawa, "Development of a Gallium-Doped Germanium Far-Infrared Photoconductor Direct Hybrid Two-Dimensional Array," Appl. Opt. 42, 2166-2173 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2166


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Cox and P. G. Mezger, “The galactic infrared/submillimeter dust radiation,” Astron. Astrophys. Rev. 1, 49–83 (1989).
  2. C. J. Lonsdale, P. B. Hacking, and T. P. Conrow, “Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey,” Astrophys. J. 358, 60–80 (1990).
  3. H. Shibai, S. Arimura, M. Tanaka, T. Teshima, Y. Doi, T. Nagata, N. Naruta, S. Makiuti, N. Hiromoto, M. Fujiwara, H. Okuda, and A. Itoh, “FIRBE: Far-infrared balloon-borne experiment,” Adv. Space Res. 30, 2089–2097 (2002).
  4. B. T. Soifer, J. R. Houck, and G. Neugebauer, “The IRAS view of the extragalactic sky,” Annu. Rev. Astron. Astrophys. 35, 187–230 (1987).
  5. C. A. Beichman, “The IRAS view of the galaxy and the solar system,” Annu. Rev. Astron. Astrophys. 35, 521–563 (1987).
  6. P. Cox and M. F. Kessler, eds., The Universe as Seen by ISO, ESA SP-427 (European Space Agency, Noordwijk, The Netherlands, 1999).
  7. G. Neugebauer, H. J. Habing, R. van Duinen, H. H. Aumann, B. Baud, C. A. Beichman, D. A. Beintema, N. Boggess, P. E. Clegg, T. de Jong, J. P. Emerson, T. N. Gautier, F. C. Gillett, S. Harris, M. G. Hauser, J. R. Houck, R. E. Jennings, F. J. Low, P. L. Marsden, G. Miley, F. M. Olnon, S. R. Pottasch, E. Raimond, M. Rowan-Robinson, B. T. Soifer, R. G. Walker, P. R. Wesselius, and E. Young, “The infrared astronomical satellite (IRAS) mission,” Astrophys. J. 278, L1–L6 (1984).
  8. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
  9. M. Hermann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
  10. P. R. Bratt, “Impurity germanium and silicon infrared detector,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, New York, 1997), pp. 33–142.
  11. E. T. Young, J. T. Davis, C. L. Thompson, G. H. Rieke, G. Rivlis, R. Schnurr, J. Cadien, L. Davidson, G. S. Winters, and K. A. Kormos, “Far-infrared imaging array for SIRTF,” in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 57–65 (1998).
  12. R. Katterloher, L. Barl, J. Beeman, E. Czech, D. Engemann, O. Frenzl, N. Haegel, E. E. Haller, T. Henning, L. Hermans, G. Jakkob, M. Konuma, and G. Pilbratt, “4 × 32 FIRGA array—a pacesetter for a 52 × 32-element gallium arsenide focal plane array,” in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 116–125 (1998).
  13. J. W. Beeman, W. L. Hansen, and E. E. Haller, “Extrinsic germanium photoconductors for far-IR astronomy: research results and works in progress,” in Submillimeter and Far-Infrared Space Instrumentation, E. J. Rolfe, ed., ESA SP-388 (European Space Agency, Noordwijk, The Netherlands), pp. 21–24 (1996).
  14. J. Wolf, J. Schubert, H. Anheyer, H. Driescher, K. Hanna, S. Kirches, E. Paul, D. Rabanus, K. Rösner, and A. Krabbe, “SPICA: a spectral-photometric infrared camera for SOFIA,” in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 952–961 (1998).
  15. M. Kawada, “Far-infrared surveyor onboard IRIS,” in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 905–914 (1998).
  16. H. Murakami, “Japanese infrared survey mission IRIS (ASTRO-F),” in Space Telescope and Instruments V, P. Y. Bely and J. B. Breckinridge, eds., Proc. SPIE 3356, 471–477 (1998).
  17. J. W. Beeman and E. E. Haller, “Ge:Ga photoconductor arrays: design consideration and quantitative analysis of prototype single pixels,” Infrared Phys. Technol. 35, 827–836 (1994).
  18. N. Hiromoto, M. Fujiwara, H. Shibai, and H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. Part 1 35, 1676–1680 (1996).
  19. M. Fujiwara and N. Hiromoto, “Ge:Ga far-infrared photoconductor with a low Ga concentration of 1 × 1014 cm−3,” Jpn. J. Appl. Phys. Part 1 36, 4262–4266 (1997).
  20. N. Hiromoto, M. Fujiwara, H. Shibai, T. Hirao, T. Nakagawa, and M. Kawada, “Ge:Ga far-infrared photoconductor 2D direct hybrid array,” in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 48–56 (1998).
  21. E. T. Young, “Germanium detectors for the far-infrared,” http://www.stsci.edu/stsci/meetings/space_detectors/proceedings/june27_proceed.htm.
  22. T. Hirao, Y. Hibi, M. Kawada, H. Nagata, H. Shibai, T. Watabe, M. Noda, and T. Nakagawa, “Cryogenic readout electronics with silicon P-MOSFETs for the infrared astronomical satellite, ASTRO-F,” Adv. Space Res. 30, 2117–2122 (2002).
  23. J. T. Longo, D. T. Cheung, A. M. Andrews, C. C. Wang, and J. M. Tracy, “Infrared focal plane in intrinsic semiconductors,” IEEE Trans. Electron. Devices 25, 213–232 (1978).
  24. N. Oda, NEC Corporation 1–1 Miyazaki, 4-chome, Miyamae-ku, Kawasaki, Kanagawa 216–8555, Japan (personal communication, 1998).
  25. L. Varnell and D. E. Langford, “Radiation effects in IRAS extrinsic infrared detectors,” IEEE Trans. Nucl. Sci. NS-29, 1551–1554 (1982).
  26. D. M. Watson, M. T. Guptill, J. E. Huffman, T. N. Krabach, S. N. Raines, and S. Satyapal, “Germanium blocked-impurity-band detector array: unpassivated devices with bulk substrates,” J. Appl. Phys. 74, 4199–4206 (1993).
  27. N. M. Haegel, C. A. Latasa, and A. M. White, “Transient response of infrared photoconductors: the roles of contacts and space charge,” Appl. Phys. A 56, 15–21 (1993).
  28. J. Q. Wang, P. L. Richards, J. W. Beeman, N. M. Haegel, and E. E. Haller, “Optical efficiency of far-infrared photoconductors,” Appl. Opt. 25, 4125–4134 (1986).
  29. M. Fujiwara, “Development of far-infrared Ge:Ga photoconductor having a longitudinal configuration,” Appl. Phys. Lett. 77, 3099–3101 (2000).
  30. N. Sclar, “Properties of doped silicon and germanium infrared detectors,” in Progress in Quantum Electronics (Pergamon, Elmsford, N.Y., 1984), Vol. 9, pp. 240–242.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited