OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2181–2187

Improving the performance of fiber gratings with sinusoidal chirps

Lin Zhang and Changxi Yang  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2181-2187 (2003)
http://dx.doi.org/10.1364/AO.42.002181


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sinusoidal chirps are introduced in fiber gratings to improve their performance as dispersion compensators and multichannel filters. The sinusoidally chirped fiber gratings exhibit a flattop spectrum with steep edges and high reflectivity. The bandwidth utilization defined as the ratio of -1:-30-dB bandwidth could be very high (>0.85). This structure can be applied to the sampled fiber gratings to enhance channel uniformity. We demonstrate 264 uniform channels with a 25-GHz-spacing for high-density-wavelength multiplexing applications. Multichannel dispersion compensations with seven uniform channels of 50-GHz-spacing in short fiber gratings are also demonstrated. The impact of possible fabrication errors on the spectra of the gratings is discussed.

© 2003 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1480) Optical devices : Bragg reflectors
(230.1950) Optical devices : Diffraction gratings

History
Original Manuscript: July 9, 2002
Revised Manuscript: December 2, 2002
Published: April 20, 2003

Citation
Lin Zhang and Changxi Yang, "Improving the performance of fiber gratings with sinusoidal chirps," Appl. Opt. 42, 2181-2187 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001). [CrossRef]
  2. G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.
  3. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  4. T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.
  5. W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995). [CrossRef]
  6. S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993). [CrossRef]
  7. J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997). [CrossRef]
  8. R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993). [CrossRef]
  9. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filter in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  10. M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.
  11. H. Storøy, H. E. Engan, B. Sahlgren, R. Stubbe, “Position weighting of fiber Bragg gratings for bandpass filtering,” Opt. Lett. 22, 784–786 (1997). [CrossRef] [PubMed]
  12. A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999). [CrossRef]
  13. M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.
  14. X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000). [CrossRef]
  15. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996). [CrossRef]
  16. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000). [CrossRef]
  17. J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999). [CrossRef]
  18. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995). [CrossRef]
  19. J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999). [CrossRef]
  20. M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998). [CrossRef]
  21. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987). [CrossRef] [PubMed]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  23. K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited