OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 12 — Apr. 20, 2003
  • pp: 2206–2212

2-mJ Single-Axial-Mode Gain-Switched Cr:forsterite Lasers

Jan C. Diettrich, Donald M. Warrington, and Iain T. McKinnie  »View Author Affiliations


Applied Optics, Vol. 42, Issue 12, pp. 2206-2212 (2003)
http://dx.doi.org/10.1364/AO.42.002206


View Full Text Article

Acrobat PDF (123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-longitudinal-mode operation of a gain-switched Cr4+ laser, with output energy as much as 1.9 mJ, is reported from two different coupled-cavity resonators. A prism-coupled cavity and a modified Michelson interferometric grazing-incidence (MIGI) cavity was pumped by a multilongitudinal-mode Q-switched Nd:YAG laser; the modified MIGI cavity obtained 100-MHz-bandwidth laser output tunable between 1150 and 1330 nm. Conversion efficiency of 3.2% (slope efficiency of 4%) was achieved, with a pump threshold density as small as 0.2 J/cm2. Mode spacing of the laser output in multilongitudinal mode showed increased mode spacing in agreement with a coupled-cavity theory.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable

Citation
Jan C. Diettrich, Donald M. Warrington, and Iain T. McKinnie, "2-mJ Single-Axial-Mode Gain-Switched Cr:forsterite Lasers," Appl. Opt. 42, 2206-2212 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-12-2206


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
  2. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
  3. A. S. Avtukh, N. I. Zhavoronkov, and V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
  4. V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, and A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
  5. A. Agnesi, S. Dell’Acqua, and P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
  6. B. E. Bouma, G. J. Tearney, I. P. Billinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
  7. I. T. McKinnie, A. J. Tiffany, and D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1996), pp. 72–75.
  8. A. J. Tiffany, I. T. McKinnie, and D. M. Warrington, “Pulse amplification of a single-frequency Cr:forsterite laser,” Appl. Opt. 37, 4907–4913 (1998).
  9. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, and T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
  10. Z. X. Jiang, I. T. McKinnie, L. A. W. Gloster, and T. A. King, “Temporal and kinetic studies of chromium forsterite oscillators with 1064 nm laser excitation,” Pure Appl. Opt. 5, 77–88 (1996).
  11. T. Fujii, M. Nagano, and K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
  12. G. Z. Zhang and D. W. Tokaryk, “Lasing threshold reduction in grating-tuned cavities,” Appl. Opt. 36, 5855–5858 (1997).
  13. J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, T. A. King, and W. Hogervorst, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
  14. D. Binks, A. W. Gloster, T. A. King, and I. T. McKinnie, “Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator,” Appl. Opt. 36, 9371–9377 (1997).
  15. D. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395–2403 (1998).
  16. D. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, “Pulsed single-mode laser oscillation in a new coupled cavity design,” Opt. Commun. 146, 173–176 (1998).
  17. D. C. Hanna, P. A. Kärkkäinen, and R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
  18. N. P. Barnes, J. A. Williams, J. C. Barnes, and G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited