OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2257–2263

Calculation of the efficiency of polarization-insensitive surface-stabilized ferroelectric liquid-crystal diffraction gratings

Carl V. Brown and Emmanouil E. Kriezis  »View Author Affiliations


Applied Optics, Vol. 42, Issue 13, pp. 2257-2263 (2003)
http://dx.doi.org/10.1364/AO.42.002257


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rigorous analysis is presented of the diffraction efficiency of a polarization-insensitive surface-stabilized ferroelectric liquid-crystal (SSFLC) phase grating, taking full account of the internal structure of the ferroelectric liquid-crystal layer. When no field is applied, the twisted director profile in the relaxed state gives an optimum diffraction efficiency for a device thickness between the half-wave-plate and the full-wave-plate conditions. The influence of the magnitude of the spontaneous polarization and applied ac fields are investigated, and it is shown that the diffraction efficiency of a binary SSFLC phase grating can be strongly enhanced with the technique of ac stabilization.

© 2003 Optical Society of America

History
Original Manuscript: September 17, 2002
Revised Manuscript: January 8, 2003
Published: May 1, 2003

Citation
Carl V. Brown and Emmanouil E. Kriezis, "Calculation of the efficiency of polarization-insensitive surface-stabilized ferroelectric liquid-crystal diffraction gratings," Appl. Opt. 42, 2257-2263 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-13-2257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Turner, D. A. Jared, G. D. Sharp, K. M. Johnson, “Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators,” Appl. Opt. 32,3094–3101 (1993). [CrossRef] [PubMed]
  2. T. D. Wilkinson, Y. Petillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34,1885–1890 (1995). [CrossRef] [PubMed]
  3. S. E. Broomfield, M. A. Neil, E. G. Paige, “Programmable multiple-level phase modulation that uses ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34,6652–6665 (1995). [CrossRef] [PubMed]
  4. R. J. Mears, W. A. Crossland, M. P. Dames, J. R. Collington, M. C. Parker, S. T. Warr, T. D. Wilkinson, A. B. Davey, “Telecommunications applications of ferroelectric liquid-crystal smart pixels,” IEEE J. Sel. Top. Quantum Electron. 2,35–46 (1996). [CrossRef]
  5. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, G. Henshal, “Holographic switching: the ROSES demonstrator,” J. Lightwave Technol. 18,1845–1854 (2000). [CrossRef]
  6. C. W. Slinger, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. Cresswell, P. M. Hallett, J. R. Hughes, V. C. Hui, J. C. Jones, R. Miller, V. Minter, D. A. Pain, D. C. Scattergood, D. T. Sheerin, M. J. Smith, M. Stanley, “Progress and prospects for practical electroholographic display systems,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Sylvia, T. J. Trout, eds., Proc. SPIE4296, 18–32 (2001). [CrossRef]
  7. S. Warr, R. Mears, “Polarization-insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31,714–716 (1995). [CrossRef]
  8. S. Warr, R. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181,53–59 (1996). [CrossRef]
  9. S. E. Broomfield, M. A. Neil, E. G. Paige, G. G. Yang, “Programmable binary phase-only device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28,26–28 (1992). [CrossRef]
  10. J. S. Patel, J. W. Goodby, “Alignment of liquid crystals which exhibit cholesteric to smectic* phase transitions,” J. Appl. Phys. 59, 2355–2360 (1986). [CrossRef]
  11. CS2005 is the trade name for a commercial high-tilt ferroelectric LC material available from Lixon Department, CHISSO Corporation, Chuo-ku, Tokyo, Japan.
  12. J. Newton, H. Coles, P. Hodge, J. Hannington, “Synthesis and properties of low-molar-mass liquid-crystalline siloxane derivatives,” J. Mater. Chem. 4,869–874 (1994). [CrossRef]
  13. N. A. Clark, S. T. Lagerwall, “Sub-millisecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36,899–901 (1980). [CrossRef]
  14. D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Cross-land, “Dynamic holographic interconnects that use ferroelectric spatial light modulators,” Appl. Opt. 33,2795–2803 (1994). [CrossRef]
  15. J. C. Jones, M. J. Towler, J. R. Hughes, “Fast, high contrast ferroelectric liquid crystal displays and the role of dielectric biaxiality,” Displays 14,86–93 (1993). [CrossRef]
  16. N. A. Clark, T. P. Reiker, “Smectic C chevron, a planar liquid-crystal defect—implications for the surface stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988). [CrossRef] [PubMed]
  17. M. H. Anderson, J. C. Jones, E. P. Raynes, M. J. Towler, “Optical studies of thin layers of smectic C materials,” J. Phys. D 24,338–342 (1991). [CrossRef]
  18. E. P. Raynes, R. J. Tough, “The guiding of plane polarized-light by twisted liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 2,139–145 (1985).
  19. C. L. Xu, W. P. Huang, J. Chrostowski, S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12,1926–1931 (1994). [CrossRef]
  20. E. E. Kriezis, S. J. Elston, “Wide-angle beam propagation method for liquid-crystal device calculations,” Appl. Opt. 39,5707–5714 (2000). [CrossRef]
  21. J. Z. Xue, N. A. Clark, “Stroboscopic microscopy of ferroelectric liquid crystals,” Phys. Rev. E 48,2043–2054 (1993). [CrossRef]
  22. C. V. Brown, J. C. Jones, “Accurate determination of the temperature- and frequency-dependent smectic C biaxial permittivity tensor,” J. Appl. Phys. 86,3333–3341 (1999). [CrossRef]
  23. C. V. Brown, J. C. Jones, M. S. Bancroft, “Detailed simulation of the Goldstone mode response of FLCs in the surface stabilized geometry,” Ferroelectrics 245,743–751 (2000). [CrossRef]
  24. J. C. Jones, E. P. Raynes, M. J. Towler, J. R. Sambles, “Dielectric biaxiality in smectic C host systems,” Mol. Cryst. Liq. Cryst. 199,277–285 (1991). [CrossRef]
  25. M. J. Towler, J. R. Hughes, F. C. Saunders, “Switching behavior of smectic C* liquid crystals,” Ferroelectrics 113,453–465 (1991). [CrossRef]
  26. SCE8* and SCE13* are the trade names for pitch-compensated, low-tilt commercial ferroelectric LC mixtures developed by BDH Ltd., Poole, Dorset, UK.
  27. M. H. Lu, K. A. Grandall, C. Rosemblatt, “Polarization induced renormalization of the B(1) elastic modulus in a ferroelectric liquid-crystal,” Phys. Rev. Lett. 68,3575–3578 (1992). [CrossRef] [PubMed]
  28. K. Okano, “Electrostatic contribution to the distortion free-energy density of ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 25,846–847 (1986). [CrossRef]
  29. D. C. Ulrich, “Domain formation and switching in ferroelectric liquid crystals,” Ph.D. dissertation (University of Oxford, Oxford, UK., 1995).
  30. J. E. Maclennan, N. A. Clark, M. J. Handschy, M. R. Meadows, “Director orientation in chevron surface-stabilized ferroelectric liquid crystal cells,” Liq. Cryst. 7,753–785 (1990). [CrossRef]
  31. R. Blacker, K. Lewis, I. Mason, I. Sage, C. Webb, “Nano-phase polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 329,799–810 (1999). [CrossRef]
  32. T. Vallius, P. Vahimaa, J. Turunen, Y. Svirko, “Polarization diffractive optics of chiral nanogratings,” in Proceedings of International Quantum Electronics Conference, Moscow, Russia (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited