OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2278–2283

Fabrication and Modeling of Uniform-Waist Single-Mode Tapered Optical Fiber Sensors

Joel Villatoro, David Monzón-Hernández, and Efrain Mejía  »View Author Affiliations


Applied Optics, Vol. 42, Issue 13, pp. 2278-2283 (2003)
http://dx.doi.org/10.1364/AO.42.002278


View Full Text Article

Acrobat PDF (101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication and modeling of single-mode tapered optical fiber sensors. The fabrication technique consists of stretching a section of fiber with an oscillating flame torch. Such a process allows controllable fabrication of lossless tapered fibers with a uniform waist. The sensor transmittance is modeled with a simple ray optics approach. In the model, all the taper parameters are taken into account. Our results indicate that sensor sensitivity can be adjusted with the taper waist diameter. As an example a gold-coated tapered fiber is theoretically and experimentally analyzed.

© 2003 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(240.6680) Optics at surfaces : Surface plasmons

Citation
Joel Villatoro, David Monzón-Hernández, and Efrain Mejía, "Fabrication and Modeling of Uniform-Waist Single-Mode Tapered Optical Fiber Sensors," Appl. Opt. 42, 2278-2283 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-13-2278


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. O. S. Wolfbeis, ed., Fiber Optic Chemical Sensors and Biosensors, (CRC Press, Boca Raton, Fla., 1991), Vols. I and II.
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood Mass., 1999).
  3. L. C. Bobb, H. D. Krumboltz, and P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
  4. A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
  5. A. Romolini, R. Falciai, and A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
  6. M. Shadaram, L. Espada, J. Martinez, and F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
  7. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
  8. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
  9. G. Stewart and B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
  10. W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
  11. A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
  12. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
  13. R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
  14. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
  15. J. D. Love and W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
  16. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, “Investigation of power oscillations along tapered monomode fibres,” Appl. Opt. 26, 444–448 (1987).
  17. L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
  18. A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
  19. J. H. Zhan and S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
  20. J. Adams, Introduction to Optical Waveguides (Wiley, New York, 1981).
  21. K. Okamoto, Fundamentals of Optical Waveguides, 1st ed.(Academic, San Diego, Calif., 2000).
  22. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited