OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2301–2311

Analysis, Search, and Classification for Reflective Ring-Field Projection Systems

Matthieu F. Bal, Florian Bociort, and Joseph J. M. Braat  »View Author Affiliations


Applied Optics, Vol. 42, Issue 13, pp. 2301-2311 (2003)
http://dx.doi.org/10.1364/AO.42.002301


View Full Text Article

Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extreme ultraviolet (EUV) lithography uses reflective ring-field projection systems. Geometrical obstruction limits the possible system configurations to small domains of the parameter space. We present an analysis, a search method, and a classification of these unobstructed domains. The exhaustive search method based on paraxial analysis provides an effective means for determining all possible design forms and for finding useful starting configurations for optimization. The approach is validated through comparison with finite ray tracing.

© 2003 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(110.3960) Imaging systems : Microlithography
(340.7440) X-ray optics : X-ray imaging

Citation
Matthieu F. Bal, Florian Bociort, and Joseph J. M. Braat, "Analysis, Search, and Classification for Reflective Ring-Field Projection Systems," Appl. Opt. 42, 2301-2311 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-13-2301


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Dinger, “Ringfeld-4-Spiegelsysteme mit konvexem Primarspiegel für die EUV-Lithography,” European patent EP 0 962 830 A1 (8 December 1999).
  2. J. Braat, “Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system,” U.S. patent 6,299,318 (9 October 2001).
  3. J. Braat, “Lithographic apparatus comprising a dedicated mirror projection system,” U.S. patent 6,396,067 (28 May 2002).
  4. J. Braat and J. Verhoeven, “Method of imaging a mask pattern on a substrate by means of euv radiation, and apparatus and mask for performing the method,” U.S. patent 6,280,906 (28 August 2001).
  5. J. Bruning, A. Phillips, D. Shafer, and A. White, “X-ray projection lithography camera,” U.S. patent 5,220,590 (15 June 1993).
  6. J. Bruning, A. Phillips, D. Shafer, and A. White, “Lens system for X-ray projection lithography camera,” U.S. patent 5,353,322 (4 October 1994).
  7. R. Hudyma, “High numerical aperture ring field projection system for extreme ultraviolet lithography,” U.S. patent 6,033,079 (7 March 2000).
  8. R. Hudyma, “High numerical aperture ring field projection system for extreme ultraviolet lithography,” U.S. patent 6,183,095 (6 February 2001).
  9. R. Hudyma and D. Shafer, “High numerical aperture ring field projection system for extreme ultraviolet lithography,” U.S. patent 6,188,513 (2 February 2001).
  10. T. Jewell and J. Rodgers, “Apparatus for semiconductor lithography,” U.S. patent 5,063,586 (5 November 1991).
  11. T. Jewell and K. Tompson, “X-ray ringfield lithography,” U.S. patent 5,315,629 (24 May 1994).
  12. D. Shafer, “Reflective projection system comprising four spherical mirrors,” U.S. patent 5,410,434 (25 April 1995).
  13. D. Shafer, “Projection lithography system and method using all-reflective optical elements,” U.S. patent 5,686,728 (11 November 1997).
  14. M. Suzuki, N. Mochizuki, S. Minami, S. Ogura, Y. Fukuda, Y. Watanabe, Y. Kawai, and T. Kariya, “X-ray reduction projection exposure system of reflection type,” U.S. patent 5,153,898 (10 October 1992).
  15. V. Viswanathan and B. Newnam, “Reflective optical imaging system for extreme ultraviolet wavelengths,” U.S. patent 5,212,588 (18 May 1993).
  16. D. Williamson, “High numerical aperture ring field optical reduction system,” U.S. patent 5,815,310 (29 September 1998).
  17. D. Williamson, “Four mirror EUV projection optics,” U.S. patent 5,956,192 (21 September 1999).
  18. S. A. Lerner, J. M. Sasian, and M. R. Descour, “Design approach and comparison of projection cameras for EUV lithography,” Opt. Eng. 39, 792–802 (2000).
  19. J. M. Howard and B. D. Stone, “Imaging a point with two spherical mirrors,” J. Opt. Soc. Am. A 15, 3045–3056 (1998).
  20. J. M. Howard and B. D. Stone, “Imaging a point to a line with a single spherical mirror,” Appl. Opt. 37, 1826–1834 (1998).
  21. J. M. Howard and B. D. Stone, “Imaging with three spherical mirrors,” Appl. Opt. 39, 3216–3231 (2000).
  22. J. M. Howard and B. D. Stone, “Imaging with four spherical mirrors,” Appl. Opt. 39, 3232–3242 (2000).
  23. F. Pedrotti and L. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  24. code v, Optical Research Associates, Pasadena, Calif., 2001.
  25. oslo, Lambda Research Corporation, Littleton, Mass., 2001.
  26. M. Bal, F. Bociort, and J. Braat, “Influence of multilayers on the optical performance of extreme-ultraviolet projection systems,” in International Optical Design Conference 2002, P. K. Manhart and J. M. Sasian, eds., Proc. SPIE 4832, 149–157 (2002).
  27. H.-J. Mann, W. Ulrich, and G. Seitz, “8-mirrored microlithographic projector lens,” World Intellectual Property Organization patent WO 02/33467A1 (25 April 2002).
  28. M. Bal, F. Bociort, and J. Braat, “Lithographic apparatus and device manufacturing method,” European patent EP 1 20 95 03 A2 (29 May 2002). ·

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited