OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2388–2397

Micromachined, Silicon Filament Light Source for Spectrophotometric Microsystems

Juliana Tu, Dwight Howard, Scott D. Collins, and Rosemary L. Smith  »View Author Affiliations

Applied Optics, Vol. 42, Issue 13, pp. 2388-2397 (2003)

View Full Text Article

Acrobat PDF (529 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A miniature broadband light source is a critical element in a spectrophotometric microsystem. The design, fabrication, and characterization of a highly stable, miniature broadband light source that comprises filaments of single-crystal silicon are presented. Electrical current versus voltage and radiant emittance spectra under constant voltage bias are measured and related to filament dimensions. A maximum stable operating temperature for these filaments is estimated to be 1200 K. Resistance drift is demonstrated to be less than 0.5% over a 10-h period of continuous operation with visible incandescence. Emittance spectra of a multifilament array, measured at three different electrical biases, are presented and shown to compare well with theoretical blackbody radiation spectra. A continuous, total radiated power of 10.7 mW was achieved with a 1 mm × 1 mm filament array with peak emittance at λ = 2.7 µm.

© 2003 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.4000) Optical devices : Microstructure fabrication
(230.6080) Optical devices : Sources

Juliana Tu, Dwight Howard, Scott D. Collins, and Rosemary L. Smith, "Micromachined, Silicon Filament Light Source for Spectrophotometric Microsystems," Appl. Opt. 42, 2388-2397 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).
  2. R. T. Conley, Infrared Spectroscopy, 2nd ed.(Allyn and Bacon, Boston, Mass., 1972).
  3. C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).
  4. T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 18941912 (Clarendon, Oxford, 1978).
  5. H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 9296 (1990).
  6. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).
  7. J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).
  8. H. C. Ohanian, Physics (Norton, New York, 1985).
  9. P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, and J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 17941798 (1991).
  10. P. M. Alt and P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 10061015 (1973).
  11. F. Hochberg, H. K. Seitz, and A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 10021005 (1973).
  12. H. Guckel and D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 1114 June 1985.
  13. G. Lamb, M. Jhabvala, and A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).
  14. C. H. Mastrangelo, J. H.-J. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 13631375 (1992).
  15. P. Y. Chen and R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 1316 June 1994).
  16. T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509516 (2000).
  17. S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 22422262 (1997).
  18. E. Bassous and A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167170 (1989).
  19. S. Wolf and R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.
  20. Sadtler Research Laboratories, Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Philadelphia, Pa., 1984), p. 86.
  21. R. F. Wolffenbuttel and K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223229 (1994).
  22. D. E. Roller and R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.
  23. M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 3739.
  24. P. Olckers, A. M. Ferber, V. K. Dmitriev, and G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 1014 June 2001.
  25. A. M. Ferber, P. Olckers, H. Rogne, and M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 4446 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited