OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2431–2435

Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap

Katsumasa Iwai, Yi-Wei Shi, Koh Nito, Yuji Matsuura, Takao Kasai, Mitsunobu Miyagi, Seichi Saito, Youichi Arai, Naomasa Ioritani, Yoshihide Okagami, Michal Nemec, Jan Sulc, Helena Jelinkova, Miroslav Zavoral, Oto Kohler, and Pavel Drlik  »View Author Affiliations


Applied Optics, Vol. 42, Issue 13, pp. 2431-2435 (2003)
http://dx.doi.org/10.1364/AO.42.002431


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An Er:YAG laser light delivery system composed of a polymer-coated silver hollow waveguide and a quartz sealing cap has been developed for calculus fragmentation. Sealing caps with various distal-end geometries were fabricated, and the focusing effects of these caps for Er:YAG laser light were measured both in air and in water. Owing to the high power capability of the quartz sealing caps, a beam of Er:YAG laser light with an output energy of 200 mJ and a repetition rate of 10 Hz was successfully transmitted in saline solution by use of the system. Calculus fragmentation experiments conducted in vitro showed that the delivery system is suitable for medical applications in lithotripsy. We also found that the cap with a focusing effect is more effective in cutting calculi. The deterioration of the sealing caps after calculus fragmentation is also discussed.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(160.5470) Materials : Polymers
(170.1610) Medical optics and biotechnology : Clinical applications
(170.7230) Medical optics and biotechnology : Urology
(230.7370) Optical devices : Waveguides

History
Original Manuscript: November 8, 2002
Published: May 1, 2003

Citation
Katsumasa Iwai, Yi-Wei Shi, Koh Nito, Yuji Matsuura, Takao Kasai, Mitsunobu Miyagi, Seichi Saito, Youichi Arai, Naomasa Ioritani, Yoshihide Okagami, Michal Nemec, Jan Sulc, Helena Jelinkova, Miroslav Zavoral, Oto Kohler, and Pavel Drlik, "Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap," Appl. Opt. 42, 2431-2435 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-13-2431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001). [CrossRef] [PubMed]
  2. K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001). [CrossRef]
  3. M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).
  4. H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995). [CrossRef]
  5. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  6. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993). [CrossRef] [PubMed]
  7. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995). [CrossRef] [PubMed]
  8. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996). [CrossRef] [PubMed]
  9. Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999). [CrossRef]
  10. M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.
  11. S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002). [CrossRef] [PubMed]
  12. K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese. [CrossRef]
  13. M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, London, 1985), pp. 749–763.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited