OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2436–2442

Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber

Kevin R. Diamond, Michael S. Patterson, and Thomas J. Farrell  »View Author Affiliations

Applied Optics, Vol. 42, Issue 13, pp. 2436-2442 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantifying fluorescent compounds in turbid media such as tissue is made difficult by the effects of multiple scattering and absorption of the excitation and emission light. The approach that we used was to measure fluorescence using a single 200-µm optical fiber as both the illumination source and the detector. Fluorescence of aluminum phthalocyanine tetrasulfonate (AlPcS4) was measured over a wide range of fluorophore concentrations and optical properties in tissue-simulating phantoms. A root-mean-square accuracy of 10.6% in AlPcS4 concentration was attainable when fluorescence was measured either interstitially or at the phantom surface. The individual effects of scattering, absorption, and the scattering phase function on the fluorescence signal were also studied by experiments and Monte Carlo simulations.

© 2003 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: September 5, 2002
Revised Manuscript: December 12, 2002
Published: May 1, 2003

Kevin R. Diamond, Michael S. Patterson, and Thomas J. Farrell, "Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber," Appl. Opt. 42, 2436-2442 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995). [CrossRef] [PubMed]
  2. J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993). [PubMed]
  3. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000). [CrossRef] [PubMed]
  4. R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998). [CrossRef] [PubMed]
  5. T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998). [PubMed]
  6. M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993). [CrossRef] [PubMed]
  7. D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996). [CrossRef] [PubMed]
  8. R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986). [CrossRef] [PubMed]
  9. S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).
  10. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000). [CrossRef]
  11. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001). [CrossRef]
  12. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  13. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001). [CrossRef]
  14. C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993). [CrossRef] [PubMed]
  15. J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994). [CrossRef]
  16. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001). [CrossRef] [PubMed]
  17. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering of Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  19. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991), pp. 222–226.
  20. M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000). [CrossRef] [PubMed]
  21. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999). [CrossRef]
  22. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  23. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997). [CrossRef] [PubMed]
  24. C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited