OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 14 — May. 10, 2003
  • pp: 2465–2481

Design and Implementation of a Modulator-Based Free-Space Optical Backplane for Multiprocessor Applications

Andrew G. Kirk, David V. Plant, Ted H. Szymanski, Zvonko G. Vranesic, Frank A. P. Tooley, David R. Rolston, Michael H. Ayliffe, Frederic K. Lacroix, Brian Robertson, Eric Bernier, and Daniel F.-Brosseau  »View Author Affiliations


Applied Optics, Vol. 42, Issue 14, pp. 2465-2481 (2003)
http://dx.doi.org/10.1364/AO.42.002465


View Full Text Article

Acrobat PDF (2522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.

© 2003 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics

Citation
Andrew G. Kirk, David V. Plant, Ted H. Szymanski, Zvonko G. Vranesic, Frank A. P. Tooley, David R. Rolston, Michael H. Ayliffe, Frederic K. Lacroix, Brian Robertson, Eric Bernier, and Daniel F.-Brosseau, "Design and Implementation of a Modulator-Based Free-Space Optical Backplane for Multiprocessor Applications," Appl. Opt. 42, 2465-2481 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-14-2465


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. H. Collet, D. Litaize, J. Van Campenhout, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, and A. Louri, “Architectural approach of the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671–682 (2000).
  2. J. H. Collet, W. Hlayhel, and D. Litaize, “Parallel optical interconnects may reduce the communication bottleneck in symmetric multiprocessor computers,” Appl. Opt. 40, 3371–3378 (2001).
  3. A. F. J. Levi, “Optical interconnects in systems,” Proc. IEEE 88, 750–757 (2000).
  4. D. A. B. Miller, “Rationale and challenges for optical interconnects to electrical chips,” Proc. IEEE 88, 728–749 (2000).
  5. M. R. Feldman, S. C. Esener, C. G. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1989).
  6. E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightwave Technol. 19, 1532–1542 (2001).
  7. R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa, A. Grbic, M. Gusat, R. Ho, O. Krieger, G. Lemieux, K. Loveless, N. Manjikian, P. McHardy, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic, “The NUMAchine multiprocessor,” in Proceedings of the International Conference on Parallel Processing (IEEE Computer Society), 487–496 (2000).
  8. A. V. Krishnamoorthy and D. A. B. Miller, “Firehose architectures for free-space optically interconnected VLSI circuits,” J. Parallel and Distributed Computing 41, 109–114 (1997).
  9. T. H. Szymanski and H. S. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
  10. T. H. Szymanski and H. S. Hinton, “Optoelectronic smart pixel array for a reconfigurable intelligent optical interconnect,” U.S. Patent 6, 016, 211 (18 January 2000).
  11. H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1648 (1994).
  12. Y. S. Liu, G. C. Boisset, M. H. Ayliffe, R. Iyer, and D. V. Plant, “Design, implementation and characterisation of a four stage hybrid optical system for a free-space optical backplane demonstrator,” Appl. Opt. 37, 2895–2914 (1998).
  13. D. A. B. Miller, “Novel analog self-electro-optic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
  14. M. B. Venditti, E. Laprise, J. Faucher, P.-O. Laprise, J. S. Ahearn, and D. V. Plant, “Design and verification of an OE-VLSI chip with 1080 VCSELs and PDs heterogeneously integrated with CMOS,” Proc. IEEE/LEOS 2001 Annual Meeting, PD-1.4. (2001).
  15. A. L. Lentine, K. W. Goossen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J.-M. Kuo, D. W. Dahringer, D. P. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, and D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron. 2, 77–84 (1996).
  16. D. T. Neilson, “Optimization and tolerance analysis of QCSE modulators and detectors,” IEEE J. Quantum Electron. 33, 1094–1103 (1997).
  17. D. Rolston, “The design, layout and characterization of VLSI optoelectronic chips for free-space optical interconnects,” Ph.D. dissertation (McGill University, Montreal, Canada, 2000).
  18. J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, and S. J. Hinterlong, “Fabrication of fiber bundle arrays for free-space photonic switching systems,” Opt. Eng. 33, 2979–2985 (1994).
  19. C. V. Cryan, “Two-dimensional multimode fiber array for optical interconnects,” Electron. Lett. 34, 586–587 (1998).
  20. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
  21. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, and M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
  22. Y. Li, T. Wang, H. Kosaka, S. Kawai, and K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
  23. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
  24. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).
  25. C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, and S. Esener, “Parallel distributed free-space optoelectronic computer engine using flat ‘plug-on-top’ optics package,” Optics in Computing 2000, R. A. Lessard and T. V. Galstian, eds., Proc. SPIE 4089, 1037–1045 (2000).
  26. M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, and F. Kiamilev, “Description and evaluation of the fast-net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
  27. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, and S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
  28. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
  29. D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
  30. H. Thienpont, C. Debaes, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, and M. Hanney, “Plastic microoptical interconnection modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE 88, 769–779 (2000).
  31. D. T. Neilson and C. P. Barrett, “Performance trade-offs for conventional lenses in free-space digital optics,” Appl. Opt. 35, 1240–1248 (1996).
  32. B. Robertson, “Design of an optical interconnect for photonic backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
  33. F. Lacroix, E. Bernier, M. H. Ayliffe, F. A. P. Tooley, D. V. Plant, and A. G. Kirk, “Implementation of a compact, four-stage, scalable optical interconnect for photonic backplane applications,” Appl. Opt. 41, 1541–1555 (2002).
  34. F. K. Lacroix, “Design, analysis and implementation of free-space optical interconnects,” Ph.D. dissertation (McGill University, Montreal, Canada, 2001).
  35. D.-F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, and A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
  36. B. Robertson, Y. Liu, G. C. Boisset, M. R. Taghizadeh, and D. V. Plant, “In situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 35, 9253–9260 (1997).
  37. M. H. Ayliffe, M. Chateauneuf, D. R. Rolston, A. G. Kirk, and D. V. Plant, “Design and testing of a kinematic package supporting a 32 × 32 array of GaAs modulators flip-chip bonded to a CMOS chip,” IEEE J. Lightwave Technol. 19, 1543–1599 (2001).
  38. M. H. Ayliffe, “Alignment and packaging techniques for two-dimensional free-space optical interconnects,” Ph.D. dissertation (McGill University, Montreal, Canada, 2001).
  39. C. Alleyne and A. G. Kirk, “Transmission uniformity of diffractive parallel optical interconnect relays: A numerical analysis based on rigorous coupled wave theory,” Proc. 15th IEEE LEOS Annual Meeting, Vol 2, 901–902 (2002).
  40. D. T. Neilson and E. Schenfeld, “Free-space optical relay for the interconnection of multimode fibers,” Appl. Opt. 38, 2297–2300 (1999).
  41. C. Debaes, M. Vervacke, H. Onevaere, W. Meeus, P. Tuteleers, M. Brunfaut, V. Baukens, J. Van Campenhout, H. Thienpont, “Demonstration of manufacturable free-space modules for multichannel intra-chip optical interconnects,” Proc. 15th IEEE LEOS Annual Meeting, Vol 1, 63–64 (2002).
  42. F. Thomas-Dupuis, M. Châteauneuf, and A. G. Kirk, “Assembly and characterization of a folded spot array generator for a modulator-based free-space optical interconnect,” Proc. Intl. Topical Meeting on Optics in Computing, Vol. 1, Taipei, Taiwan, 328–330 (2002).
  43. M. Châteauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, and W. Luo, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
  44. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. D. Ahearn, “A 256 Channel Bi-Directional Optical Interconnect Using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol. 19, 1093–1103 (2001).
  45. A. G. Kirk, F. Lacroix, F. Mathieu, and F. Tooley, “Demonstration of a free-space optical broadcast network,” in Optics in Computing, Vol. 8, 1997 OSA Technical Digest (Optical Society of America, Washington, D.C., 1997), pp. 165–167.
  46. J. A. B. Dines, D. T. Nelson, J. F. Snowdon, and B. S. Wherrett, “A comparison of massively parallel interconnect topologies employing optical highways,” in Optics in Computing, Vol. 8, 1997 OSA Technical Digest (Optical Society of America, Washington, D.C., 1997), pp. 186–188.
  47. T. H. Szymanski and V. Tyan, “Error and flow control for a terabit free-space optical backplane,” IEEE J. Sel. Top. Quantum Electron. 838–846 (1999).
  48. T. H. Szymanski, “Bandwidth optimization of optical datalinks using error control codes,” Appl. Opt. 1761–1775 (2000).
  49. J. Faucher, M. B. Venditti, E. Laprise, and D. V. Plant, “Application of parallel forward error correction in two-dimensional optical data links,” IEEE J. Lightwave Technol. (to be published) (2003).
  50. C.-H. Chen, B. Hoanca, C. B. Kuznia, A. A. Sawchuk, and J.-M. Wu, “TRANslucent smart pixel array (TRANSPAR) chips for high throughput networks and SIMD signal processing,” IEEE J. Sel. Top. Quantum Electron. 5, 316–329 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited