OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 14 — May. 10, 2003
  • pp: 2532–2545

Analysis and Evaluations of Logical Instructions Called in Parallel Digital Optical Operations Based on Optical Array Logic

Naoki Nishimura, Yasuhiro Awatsuji, and Toshihiro Kubota  »View Author Affiliations


Applied Optics, Vol. 42, Issue 14, pp. 2532-2545 (2003)
http://dx.doi.org/10.1364/AO.42.002532


View Full Text Article

Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors have analyzed and evaluated a two-dimensional instruction set of parallel operation based on optical array logic (OAL), which is a digital optical computing paradigm, to clarify efficient composition of an optical computing system based on OAL. To evaluate parallel operation based on OAL, the authors have introduced new indices and evaluated a logical instruction set of various parallel operations with the indices, so that a guideline for composing a simple and efficient OAL computing system is clarified. Also, the authors have proposed the reduced operation kernel set correlation technique to perform parallel operations more efficiently by a simple OAL computing system. It has been clarified that the technique can reduce the required hardware necessary for an OAL computing system for efficient general-purpose processing.

© 2003 Optical Society of America

OCIS Codes
(200.1130) Optics in computing : Algebraic optical processing
(200.3760) Optics in computing : Logic-based optical processing
(200.4660) Optics in computing : Optical logic

Citation
Naoki Nishimura, Yasuhiro Awatsuji, and Toshihiro Kubota, "Analysis and Evaluations of Logical Instructions Called in Parallel Digital Optical Operations Based on Optical Array Logic," Appl. Opt. 42, 2532-2545 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-14-2532


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Li, G. Eichmann, and R. R. Alfano, “Optical computing using hybrid encoded shadow casting,” Appl. Opt. 25, 2636–2638 (1986).
  2. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design,” Appl. Opt. 26, 2720–2725 (1987).
  3. K. S. Gudmundsson and A. A. S. Awwal, “Computer modeling of optical shadow-casting processor,” Opt. Laser Technol. 32, 443–456 (2000).
  4. J. U. Ahmed and A. A. S. Awwal, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design: separate and simultaneous output generation,” Appl. Opt. 31, 5622–5631 (1992).
  5. V. Laude, P. Chavel, and P. Réfrégier, “Implementation of arbitrary real-valued correlation filters for the shadow-casting in coherent correlator,” Appl. Opt. 35, 5267–5274 (1996).
  6. K.-H. Brenner, A. Huang, and N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
  7. K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3062–3064 (1986).
  8. K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 25, 1687–1691 (1988).
  9. K.-S. Huang, B. K. Jenkins, and A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
  10. K.-S. Huang, B. K. Jenkins, and A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
  11. K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, and I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
  12. M. Fukui and K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
  13. M. Fukui and K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processing,” Appl. Opt. 31, 4645–4656 (1992).
  14. J. Tanida and Y. Ichioka, “Optical array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
  15. Y. Ichioka and J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
  16. J. Tanida and Y. Ichioka, “Optical-logic-array processor using shadowgrams: Optical parallel digital image processing,” J. Opt. Soc. Am. A 2, 1237–1244 (1985).
  17. J. Tanida and Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
  18. J. Tanida and Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).
  19. J. Tanida and Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
  20. J. Tanida and Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
  21. J. Tanida and Y. Ichioka, “Modular components for optical array logic system,” Appl. Opt. 26, 3954–3960 (1987).
  22. J. Tanida and Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
  23. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, and Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
  24. D. Miyazaki, J. Tanida, and Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
  25. D. Miyazaki, J. Tanida, and Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).
  26. D. Miyazaki, S. Kakizaki, T. Konishi, and Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
  27. T. Konishi, J. Tanida, and Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).
  28. J. Tanida, T. Konishi, and Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
  29. Y. Awatsuji, D. Miyazaki, J. Tanida, and Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
  30. Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, and Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
  31. M. Iwata, J. Tanida, and Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
  32. M. Iwata, J. Tanida, and Y. Ichioka, “Inference engine for expert system by using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
  33. M. Iwata, J. Tanida, and Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
  34. J. Tanida, M. Fukui, and Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
  35. M. Fukui, J. Tanida, and Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
  36. S. Kakizaki, J. Tanida, and Y. Ichioka, “Gray-image processing using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
  37. J. Tanida and Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).
  38. J. Tanida and Y. Ichioka, “Discrete correlators using multiple imaging for digital optical computing,” Opt. Lett. 16, 599–601 (1991).
  39. Y. Awatsuji, N. Nishimura, and T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).
  40. Y. Awatsuji, J. Tanida, and Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.
  41. K. Kagawa, Y. Ogura, J. Tanida, and Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
  42. K. Kagawa, Y. Ogura, J. Tanida, and Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
  43. B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, and W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
  44. R. P. Blocker, B. L. Drake, M. E. Lasher, and T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
  45. S. Kawai and Y. Kouga, “Modified signed optical processor using computer generated hologram,” Appl. Opt. 31, 6193–6199 (1992).
  46. T. Minemoto, T. Morimoto, and N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).
  47. H. J. Caulfield, W. T. Rhodes, M. J. Foster, and S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).
  48. H. T. Kung, “Why systolic architecture?,” IEEE Computer 15, 37–46 (1982).
  49. S. Y. Kung, “On supercomputing with systolic/wavefront array processor,” Proc. IEEE 72, 867–884 (1984).
  50. J. A. B. Fortes and B. W. Wah, “Systolic arrays—from concept to implementation,” IEEE Computer 20, 12–17 (1987).
  51. N. J. Nilsson, Principles of artificial intelligence (Tioga Publishing Co., Palo Alto, Calif. 1980).
  52. E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM 13, 377–387 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited