OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2623–2634

Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios

David Doxaran, Jean-Marie Froidefond, and Patrice Castaing  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2623-2634 (2003)
http://dx.doi.org/10.1364/AO.42.002623


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Variations of sediment type (grain size and refractive index) and changing illumination conditions affect the reflectance signal of coastal waters and limit the accuracy of sediment-concentration estimations from remote-sensing measurements. These effects are analyzed from numerous in situ remote-sensing measurements carried out in the Gironde and Loire Estuaries and then reduced and partly eliminated when reflectance ratios between the near infrared and the visible are considered. These ratios showed high correlation with the sediment concentration. On the basis of the obtained relationships, performing correspondence functions were established that allow an accurate estimation of suspended sediments in the estuaries from Système Probatoire d’Observation de la Terre, Landsat, and Sea-Viewing Wide Field-of-View Sensor data, independently of the date of acquisition.

© 2003 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: July 22, 2002
Revised Manuscript: December 27, 2002
Published: May 20, 2003

Citation
David Doxaran, Jean-Marie Froidefond, and Patrice Castaing, "Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios," Appl. Opt. 42, 2623-2634 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Siegel, M. Gerth, A. Mutzke, “Dynamics of the Oder river plume in the southern Baltic Sea: satellite data and numerical modelling,” Cont. Shelf Res. 19, 1143–1159 (1999). [CrossRef]
  2. P. Douillet, S. Ouillon, E. Cordier, “A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia,” Coral Reefs, 20, 361–372 (2001). [CrossRef]
  3. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  4. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  5. D. Antoine, A. Morel, J. M. André, “Algal pigment distribution and primary production in the Eastern Mediterranean as derived from Coastal Zone Color Scanner observations,” J. Geophys. Res. 100, 16193–16209 (1995). [CrossRef]
  6. D. G. Bowers, S. Boudjelas, G. E. L. Harker, “The distribution of fine sediments in the surface waters of the Irish Sea and its relation to tidal stirring,” Int. J. Remote Sens. 19, 2789–2805 (1998). [CrossRef]
  7. M. C. Robinson, K. P. Morris, K. R. Dyer, “Deriving fluxes of suspended particulate matter in the Humber estuary, UK, using airborne remote sensing,” Mar. Pollut. Bull. 37, 155–163 (1998). [CrossRef]
  8. J. M. Froidefond, P. Castaing, R. Prud’homme, “Monitoring suspended particulate matter fluxes and patterns with the AVHRR/NOAA-11 satellite: application to the Bay of Biscay,” Deep-Sea Res. II 46, 2029–2055 (1999). [CrossRef]
  9. G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999). [CrossRef]
  10. D. Doxaran, J. M. Froidefond, S. J. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002). [CrossRef]
  11. D. Doxaran, J. M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002). [CrossRef]
  12. P. Castaing, “Le transfert à l’océan des suspensions estuariennes. Cas de la Gironde,” Ph.D. dissertation (Université Bordeaux 1, France, 1981).
  13. P. Castaing, G. P. Allen, “Mechanisms of seaward escape of suspended sediment from the Gironde: a macro tidal estuary in France,” Mar. Geol. 40, 101–118 (1981). [CrossRef]
  14. J. M. Jouanneau, C. Latouche, “The Gironde Estuary,” in Contributions to Sedimentology, A. P. L. H. Fuchbauer, J. D. Milliman, E. Seibold, eds. (Springer-Verlag, Berlin, 1981), pp. 1–115.
  15. G. P. Allen, G. Sauzay, P. Castaing, J. M. Jouanneau, “Transport and deposition of suspended sediment in the Gironde estuary, France,” in Estuarine Processes, M. Wilet, ed. (Academic, New York, 1976), pp. 63–81.
  16. G. P. Allen, J. C. Salomon, P. Bassoullet, Y. Du Penhoat, C. Degranpré, “Effects of tides on mixing and suspended sediment transport in macrotidal estuaries,” Sediment. Geol. 26, 69–90 (1980). [CrossRef]
  17. D. Eisma, P. Bernard, G. C. Cadée, V. Ittekkot, J. Kalf, R. Lanne, J. M. Martin, W. G. Mook, A. Put, T. Schuhmacher, “Suspended matter particle size in some West-European estuaries; part II: a review on floc formation and break up,” Neth. J. Sea Res. 28, 215–220 (1991). [CrossRef]
  18. D. Eisma, A. Li, “Changes in suspended matter floc size during the tidal cycle in the Dollard Estuary,” Neth. J. Sea Res. 31, 107–117 (1993). [CrossRef]
  19. H. Etcheber, “Biogéochimie de la matière organique en milieu estuarien: comportement, bilans, propriétés. Cas de la Gironde,” Ph.D. dissertation (Université Bordeaux 1, France, 1983).
  20. X. Irigoien, J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: the Gironde (SW France),” Estu. Coast. Shelf Sci. 44, 507–517 (1997). [CrossRef]
  21. G. Abril, H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, M. Frankignoulle, “Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France),” Limnol. Oceanogr. 44, 1304–1315 (1999). [CrossRef]
  22. L. Berthois, “Comportement du bouchon vaseux dans l’estuaire de la Loire,” in Proceedings of the 4èmes Journées de l’Hydraulique (La Houille Blanche, Paris, 1956), pp. 564–568.
  23. P. Le Hir, B. Thouvenin, “Mathematical modelling of cohesive sediment and particulate contaminants transport in the Loire estuary,” in Changes in Fluxes in Estuaries, K. R. Dyer, R. J. Orth, eds. (Olsen and Olsen, Fredensborg, Denmark, 1994), pp. 71–78.
  24. B. Galenne, “Les accumulations turbides de l’estuaire de la Loire. Etude de la crème de vase,” Ph.D. dissertation (Université Nantes, Nantes, France, 1974).
  25. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  26. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4861 (1996). [CrossRef] [PubMed]
  27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999). [CrossRef]
  28. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  29. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  30. C. H. Whitlock, L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris, E. A. Gurganus, “Comparison of reflectance with backscatter and absorption parameters for turbid waters,” Appl. Opt. 20, 517–527 (1981). [CrossRef] [PubMed]
  31. J. M. Froidefond, P. Castaing, M. Mirmand, P. Ruch, “Analysis of the turbid plume of the Gironde (France) based on SPOT radiometric data,” Remote Sens. Environ. 36, 149–163 (1991). [CrossRef]
  32. F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean colour and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000). [CrossRef]
  33. B. Fougnie, R. Frouin, P. Lecomte, P. Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999). [CrossRef]
  34. E. Dilligeard, “Télédétection des eaux du cas II. Caractérisations des sédiments marins,” Ph.D. dissertation (Université Littoral-Côte d’Opale, Lille, France, 1997).
  35. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis (Scripps Institution of Oceanography, La Jolla, Calif., 1974), Ref. 74-10.
  36. F. Lahet, “Caractérisation optique d’eaux côtières méditerranéennes: mesure, modélisation et inversion des réflectances. Application aux observations satellitales,” Ph.D. dissertation (Université Toulon, France, 1999).
  37. H. R. Gordon, “Dependence of the diffuse reflectance of natural waters on the sun angle,” Limnol. Oceanogr. 34, 1484–1489 (1989). [CrossRef]
  38. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependance on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  39. H. Loisel, M. Morel, “Non-isotropy of the upward radiance field in typical coastal (Ce 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited