OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2635–2646

Optimal eigenanalysis for the treatment of aerosols in the retrieval of atmospheric composition from transmission measurements

Yuriy M. Timofeyev, Alexander V. Polyakov, Helen M. Steele, and Michael J. Newchurch  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2635-2646 (2003)
http://dx.doi.org/10.1364/AO.42.002635


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The separation of the individual contributions of aerosols and gases to the total attenuation of radiation through the atmosphere has been the subject of much scientific investigation since remote sensing experiments first began. We describe a new scheme to account for the spectral variation of the aerosol extinction in the inversion of transmission data from occultation measurements. Because the spectral variation of the aerosol extinction is generally unknown, the inversion problem is underdetermined and cannot be solved without a reduction in the number of unknowns in the set of equations used to describe the attenuation at each wavelength. This reduction can be accomplished by a variety of methods, including use of a priori information, the parameterization of the aerosol spectral attenuation, and the specification of the form of the aerosol size distribution. We have developed and implemented a parameterization scheme based on existing empirical and modeled information about the microphysical properties of aerosols. This scheme employs the eigenvectors from an extensive set of simulations to parameterize the aerosol extinction coefficient for incorporation into the inversion algorithm. We examine the accuracy of our method using data sets containing over 24,000 extinction spectra and compare it with that of another scheme that is currently implemented in the Polar Ozone and Aerosol Measurement (POAM) satellite experiment. In simulations using 80 wavelengths in the UV-visible-near-IR spectral range of the Stratospheric Aerosol and Gas Experiment III (SAGE) instrument, we show that, for our optimal parameterization, errors below 1% are observed in 80% of cases, whereas only approximately 20% of all cases are as accurate as this in a quadratic parameterization employing the logarithm of the wavelength.

© 2003 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.2200) Scattering : Extinction

History
Original Manuscript: August 28, 2002
Revised Manuscript: January 14, 2003
Published: May 20, 2003

Citation
Yuriy M. Timofeyev, Alexander V. Polyakov, Helen M. Steele, and Michael J. Newchurch, "Optimal eigenanalysis for the treatment of aerosols in the retrieval of atmospheric composition from transmission measurements," Appl. Opt. 42, 2635-2646 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2635

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited