OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2635–2646

Optimal eigenanalysis for the treatment of aerosols in the retrieval of atmospheric composition from transmission measurements

Yuriy M. Timofeyev, Alexander V. Polyakov, Helen M. Steele, and Michael J. Newchurch  »View Author Affiliations

Applied Optics, Vol. 42, Issue 15, pp. 2635-2646 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The separation of the individual contributions of aerosols and gases to the total attenuation of radiation through the atmosphere has been the subject of much scientific investigation since remote sensing experiments first began. We describe a new scheme to account for the spectral variation of the aerosol extinction in the inversion of transmission data from occultation measurements. Because the spectral variation of the aerosol extinction is generally unknown, the inversion problem is underdetermined and cannot be solved without a reduction in the number of unknowns in the set of equations used to describe the attenuation at each wavelength. This reduction can be accomplished by a variety of methods, including use of a priori information, the parameterization of the aerosol spectral attenuation, and the specification of the form of the aerosol size distribution. We have developed and implemented a parameterization scheme based on existing empirical and modeled information about the microphysical properties of aerosols. This scheme employs the eigenvectors from an extensive set of simulations to parameterize the aerosol extinction coefficient for incorporation into the inversion algorithm. We examine the accuracy of our method using data sets containing over 24,000 extinction spectra and compare it with that of another scheme that is currently implemented in the Polar Ozone and Aerosol Measurement (POAM) satellite experiment. In simulations using 80 wavelengths in the UV-visible-near-IR spectral range of the Stratospheric Aerosol and Gas Experiment III (SAGE) instrument, we show that, for our optimal parameterization, errors below 1% are observed in 80% of cases, whereas only approximately 20% of all cases are as accurate as this in a quadratic parameterization employing the logarithm of the wavelength.

© 2003 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.2200) Scattering : Extinction

Original Manuscript: August 28, 2002
Revised Manuscript: January 14, 2003
Published: May 20, 2003

Yuriy M. Timofeyev, Alexander V. Polyakov, Helen M. Steele, and Michael J. Newchurch, "Optimal eigenanalysis for the treatment of aerosols in the retrieval of atmospheric composition from transmission measurements," Appl. Opt. 42, 2635-2646 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Ya. Kondratyev, Actinometry (Gidrometeoizdat, Leningrad, 1965).
  2. Yu. M. Timofeyev, “Satellite methods of studying the gas content of atmosphere,” Izv. Ross. Akad. Nauk Atmos. Oceanic Phys. 25(5), 451–472 (1989) (English translation).
  3. M. J. Newchurch, D. M. Cunnold, “Aerosol effects on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements,” J. Geophys. Res. 99, 1383–1388 (1994). [CrossRef]
  4. H. M. Steele, R. P. Turco, “Separation of aerosol and gas components in the Halogen Occultation Experiment and the Stratospheric Aerosol and Gas Experiment II extinction measurements: implications for SAGE II ozone concentration and trends,” J. Geophys. Res. 102, 19665–19681 (1997). [CrossRef]
  5. D. W. Rusch, C. E. Randall, M. T. Callan, M. Horanyi, R. T. Clancy, S. C. Solomon, S. J. Oltmans, B. J. Johnson, U. Koehler, H. Claude, D. De Muer, “A new inversion for Stratospheric Aerosol and Gas Experiment II data,” J. Geophys. Res. 103, 8465–8475 (1998). [CrossRef]
  6. D. Fussen, “A critical analysis of the Stratospheric Aerosol and Gas Experiment II spectral inversion algorithm,” J. Geophys. Res. 103, 8455–8464 (1998). [CrossRef]
  7. M. E. Hervig, J. M. Russell, L. L. Gordley, J. Daniels, S. R. Drayson, J. H. Park, “Aerosol effects and corrections in the Halogen Occultation Experiment,” J. Geophys. Res. 100, 1067–1079 (1995). [CrossRef]
  8. D. Fussen, C. Binger, “A volcanism dependent model for the extinction profile of stratospheric aerosols in the UV-visible range,” Geophys. Res. Lett. 26, 703–706 (1999). [CrossRef]
  9. G. M. Grechko, N. F. Elansky, M. E. Plotkin, O. V. Postylyakov, “The Ozone and Aerosol Fine Structure Experiment: observing the fine structure of ozone and aerosol distribution in the atmosphere from the Salyut 7 orbiter,” J. Geophys. Res. 96, 18647–18653 (1991). [CrossRef]
  10. J. Lenoble, P. Pruvost, “Inference of the aerosol Angstrom coefficient from SAGE short-wavelength data,” J. Clim. Appl. Meteorol. 22, 1717–1725 (1983). [CrossRef]
  11. A. V. Poberovskii, A. V. Polyakov, Yu. M. Timofeyev, A. E. Kovalev, V. M. Prokhorov, A. Z. Khrustalev, V. A. Panchenko, I. I. Mansurov, O. N. Volkov, “Ozone profile determination by occultation sounding from the Mir space station. 1. Instrumentation and data processing method. Examples of results,” Izv. Ross. Akad. Nauk Atmos. Oceanic Phys. 35, 282–290 (1999) (English translation).
  12. M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distribution obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998). [CrossRef]
  13. J. D. Lumpe, R. M. Bevilacqua, K. W. Hoppel, S. S. Krigman, D. L. Kriebel, D. J. Debrestian, C. E. Randall, D. W. Rusch, C. Brogniez, R. Ramananahérisoa, E. P. Shettle, J. J. Olivera, J. Lenoble, P. Pruvost, “POAM II retrieval algorithm and error analysis,” J. Geophys. Res. 102, 23593–23614 (1997). [CrossRef]
  14. W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8339–8351 (1989). [CrossRef]
  15. M. S. Biryulina, V. V. Rozanov, “The parameterization of aerosol size distribution functions for forward and inverse problems of the atmosphere remote sensing,” Atmos. Opt. 3, 1087–1094 (1990) (in Russian).
  16. L. W. Thomason, “A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements,” J. Geophys. Res. 96, 22501–22508 (1991). [CrossRef]
  17. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).
  18. H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, D14, 16737–16747 (1997). [CrossRef]
  19. A. M. Obukhov, “About statistically orthogonal expansions of empirical functions,” Izv. Akad. Nauk SSSR Ser. Geofiz. 3, 432–439 (1960) (in Russian).
  20. A. V. Polyakov, A. V. Vasil’ev, Yu. M. Timofeev, “Parameterization of the spectral dependence of the aerosol attenuation coefficient in problems of atmospheric occultation sounding from space,” Izv. Ross. Akad. Nauk Atmos. Oceanic Phys. 37, 599–609 (2001) (English translation).
  21. G. M. Krekov, S. G. Zvenigorodski, Optical Model of Middle Atmosphere (Nauka, Novosibirsk, Russia, 1990) (in Russian).
  22. A. L. Lazrus, B. W. Gandrud, “Stratospheric sulfate aerosol,” J. Geophys. Res. 79, 3424–3431 (1974). [CrossRef]
  23. R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements. 3. Optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976). [CrossRef]
  24. O. B. Toon, J. B. Pollack, “A global average model of atmospheric aerosols for radiative transfer calculations,” J. Appl. Meteorol. 15, 225–246 (1976). [CrossRef]
  25. J. M. Rosen, D. J. Hofmann, S. P. Singh, “A steady state stratospheric aerosol model,” J. Atmos. Sci. 35, 1304–1313 (1978). [CrossRef]
  26. J. L. Gras, C. G. Michael, “Measurements of the stratospheric aerosol particle size distribution,” J. Appl. Meteorol. 18, 855–860 (1979). [CrossRef]
  27. R. P. Turco, P. Hamill, O. B. Toon, R. C. Whitten, C. S. Kiang, “A one-dimensional model describing aerosol formation and evolution in the stratosphere,” J. Atmos. Sci. 36, 699–736 (1979). [CrossRef]
  28. L. S. Ivlev, S. D. Andreev, Optical Properties of Atmospheric Aerosols (Leningrad, Leningrad State University, 1986) (in Russian).
  29. G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  30. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid: application to the clouds of Venus?” Appl. Opt. 14, 208–219 (1975). [PubMed]
  31. V. E. Zuev, G. M. Krekov, Current Problems of Atmospheric Optics, Vol. 2 of Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) (in Russian).
  32. E. P. Shettle, U.S. Naval Research Laboratory Washington, D.C. (personal communication, 2000).
  33. H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol. Sci. 12, 517–528 (1981). [CrossRef]
  34. S. M. Ermakov, G. A. Mikhailov, Course of Statistical Simulation (Nauka, Moscow, 1976) (in Russian).
  35. M. S. Biryulina, “The simulation of a priori ensemble of solutions of inverse problem and the stability of optimal designs of the ozone space experiment,” Meteorol. Hydrol. 4, 45–51 (1981) (in Russian).
  36. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” AFGL-TR-86-0110, No. 954 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  37. A. V. Vasilyev, L. S. Ivlev, “Empirical models and optical characteristics of aerosol ensembles of two-layer spherical particles,” Optika Atmosfery i Okena T. 10, 856–865 (1997) (in Russian).
  38. I. T. Goronovski, Yu. P. Nazarenko, F. E. Hekryach, Short Chemical Handbook (Naukova Dumka, Kiev, Russia, 1974) (in Russian).
  39. A. V. Vasilyev, “Universal algorithm for calculating the optical characteristics of homogeneous spherical aerosol particles. I. Single particles.” Vestnik S-Peterburgskogo Universiteta, Series 4: Physics and Chemistry, 4, 3–11 (1996) (in Russian).
  40. A. V. Vasilyev, “Universal algorithm for calculating the optical characteristics of homogeneous spherical aerosol particles. II. Ensembles of particles. Vestnik S-Peterburgskogo Universiteta, Series 4: Physics and Chemistry1, 14–24 (1997) (in Russian).
  41. A. V. Vasilyev, L. S. Ivlev, “Universal algorithm for calculating the optical characteristic of two-layer spherical aerosol particles with homogeneous core and coat,” Optika Atmosfery i Okena T. 9, 1552–1561 (1996) (in Russian).
  42. For more detailed information on SAGE III, see http:/www.sage3.larc.nasa.gov/ .
  43. V. F. Turchin, V. P. Kozlov, M. S. Malkevich, “Applying the methods of mathematical statistics for solving ill-posed problems,” Uspekhi Fizicheskikh Nauk 102, 345–386 (1970) (in Russian). [CrossRef]
  44. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000).
  45. S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963). [CrossRef]
  46. A. J. Stevermer, I. V. Petropavlovskikh, J. M. Rosen, J. J. DeLuisi, “Development of a global stratospheric aerosol climatology: optical properties and applications for UV,” J. Geophys. Res. 105, 22763–22776 (2000). [CrossRef]
  47. J. Anderson, C. Brogniez, L. Cazier, V. K. Saxena, J. Lenoble, M. P. McCormick, “Characterization of aerosols from simulated SAGE III measurements applying two retrieval techniques,” J. Geophys. Res. 105, 2013–2027 (2000). [CrossRef]
  48. These parameters can be found at the National Oceanic and Atmospheric Administration’s Surface Radiation Research Branch at http://www.srrb.noaa.gov/research/aerosol.html .
  49. W. Glaccum, R. L. Lucke, R. M. Bevilacqua, E. P. Shettle, J. S. Hornstein, D. T. Chen, J. D. Lumpe, S. S. Krigman, D. J. Debrestian, M. D. Fromm, F. Dalaudier, E. Chassefiere, C. Deniel, C. E. Randall, D. W. Rusch, J. J. Olivero, C. Brogniez, J. Lenoble, R. Kremer, “The polar ozone and aerosol measurement instrument,” J. Geophys. Res. 101, 14479–14487 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited