OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2653–2664

Use of Circular Cylinders as Surrogates for Hexagonal Pristine Ice Crystals in Scattering Calculations at Infrared Wavelengths

Yong-Keun Lee, Ping Yang, Michael I. Mishchenko, Bryan A. Baum, Yong X. Hu, Hung-Lung Huang, Warren J. Wiscombe, and Anthony J. Baran  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2653-2664 (2003)
http://dx.doi.org/10.1364/AO.42.002653


View Full Text Article

Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8–12-μm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 μm. For hexagonal columns larger than 40 μm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8–12-μm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.

© 2003 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.5850) Scattering : Scattering, particles

Citation
Yong-Keun Lee, Ping Yang, Michael I. Mishchenko, Bryan A. Baum, Yong X. Hu, Hung-Lung Huang, Warren J. Wiscombe, and Anthony J. Baran, "Use of Circular Cylinders as Surrogates for Hexagonal Pristine Ice Crystals in Scattering Calculations at Infrared Wavelengths," Appl. Opt. 42, 2653-2664 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2653


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
  2. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
  3. J. E. Kristjansson, J. M. Edwards, and D. L. Mitchell, “The impact of a new scheme for optical properties of ice crystals on the climate of two GCMs,” J. Geophys. Res. 105, 10,063–10,079 (2000).
  4. A. J. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocities,” J. Atmos. Sci. 57, 916–938 (2000).
  5. A. J. Heymsfield, S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, “A general approach for deriving the properties of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 59, 3–29 (2002).
  6. W. P. Arnott, Y. Y. Dong, J. Hallett, and M. R. Poellot, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
  7. D. L. Mitchell, A. Macke, and Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
  8. Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
  9. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
  10. E. E. Ebert and J. A. Curry, “A parameterization of ice cloud optical properties for climate models,” J. Geophys. Res. 97, 3831–3836 (1992).
  11. Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Clim. 9, 2058–2082 (1996).
  12. J. S. Foot, “Some observations of the optical properties of clouds. II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145–164 (1988).
  13. K. Wyser and P. Yang, “Average crystal size and bulk shortwave single scattering properties in ice clouds,” Atmos. Res. 49, 315–335 (1998).
  14. B. A. Baum, D. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, and S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11767–11780 (2000).
  15. P. Yang, B.-C. Gao, B. A. Baum, W. Wiscombe, Y. Hu, S. Nasiri, P. Soulen, A. Heymsfield, G. McFarquhar, and L. Miloshevich, “Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands,” J. Geophys. Res. 106, 17267–17291 (2001).
  16. G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, “A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions,” J. Atmos. Sci. 59, 2458–2478 (2002).
  17. M.-D. Chou, K.-T. Lee, and P. Yang, “Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models,” J. Geophys. Res. 107, doi: 10.109/2002JD002061 (2002).
  18. J. R. Key, P. Yang, B. A. Baum, and S. L. Nasiri, “Parameterization of shortwave ice cloud optical properties for various particle habits,” J. Geophys. Res. 107, 10.1029/2001JD000742 (2002).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics methods,” J. Opt. Soc. Am. A 12, 162–176 (1995).
  21. P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, W. Wiscombe, M. I. Mischenko, D. M. Winker, and S. L. Nasiri, “Asymptotic solutions of optical properties of large particles with strong absorption,” Appl. Opt. 40, 1532–1547 (2001).
  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  23. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
  24. W.-B. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
  25. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “An efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
  26. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
  27. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
  28. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for light calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
  29. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).
  30. K. N. Liou and Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
  31. P. Chylek and G. Videen, “Longwave radiative properties of polydispersed hexagonal ice crystal,” J. Atmos. Sci. 51, 175–190 (1994).
  32. A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291–4296 (1996).
  33. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?” J. Quant. Spectrosc. Radiat. Transfer 19, 521–531 (2002).
  34. A. J. Baran, P. N. Francis, P. Yang, and S. Havemann, “Simulation of scattering from ice aggregates using size/shape distributions of circular ice cylinders: an application of T-matrix,” in Proceedings of the Sixth Conference on Light Scattering by Nonspherical Particles, B. Gustafson, L. Kolokolova, and G. Videen, eds. (Army Research Laboratory, Adelphi, Md., 2002), pp. 25–28.
  35. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697–31709 (1999).
  36. Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).
  37. Q. Fu, W. B. Sun, and P. Yang, “Modeling of scattering and absorption by cirrus nonspherical ice particles at thermal infrared wavelengths,” J. Atmos. Sci. 56, 2937–2947 (1999).
  38. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
  39. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
  40. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965).
  41. W. J. Wiscombe and A. Mugnai, “Scattering from nonspherical Chebyshev particles. 2. Means of angular scattering patterns,” Appl. Opt. 27, 2405–2421 (1986).
  42. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  43. T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199–213 (1998).
  44. H. Laitinen and K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998).
  45. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T-matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
  46. S. Havemann and A. J. Baran, “Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders,” J. Quant. Spectrosc. Radiat. Transfer 70, 139–158 (2001).
  47. D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. Am. A 19, 881–893 (2002).
  48. G. Videen, Army Research Laboratory AMSRL-CI-EE, 2800 Powder Mill Road, Adelphi, Md. 20783–1197 (personal communication, 2002).
  49. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 623–625 (1993).
  50. P. Yang, B. C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S. C. Tsay, D. M. Winker, and S. L. Nasiri, “Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region,” J. Quant. Spectrosc. Radiat. Transfer 70, 473–504 (2001).
  51. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
  52. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
  53. A. J. Baran, P. Yang, and S. Havemann, “Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods,” App. Opt. 40, 4376–4386 (2001).
  54. L. Xu, J. Ding, and A. Cheng, “Scattering matrix of infrared radiation by ice finite circular cylinders,” Appl. Opt. 41, 2333–2348 (2002).
  55. W. P. Arnott, Y. Y. Dong, and J. Hallett, “Extinction efficiency in the infrared (2–18 μm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice,” Appl. Opt. 34, 541–551 (1995).
  56. P. Yang, K. N. Liou, and W. P. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
  57. A. J. Baran and S. Havemann, “Comparison of electromagnetic theory and various approximations for computing the absorption efficiency and single-scattering albedo of hexagonal columns,” Appl. Opt. 39, 5560–5568 (2000).
  58. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  59. P. Yang, B. A. Baum, H.-L. Huang, S. Platnick, Y. X. Hu, D. M. Winker, A. J. Baran, and P. N. Francis, “Single and multiple scattering/absorption properties of pristine ice crystals and polycrystals in the terrestrial window region,” in Proceedings of the Sixth Conference on Light Scattering by Nonspherical Particles, B. Gustafson, L. Kolokolova, and G. Videen, eds. (Army Research Laboratory, Adelphi, Md., 2002), pp. 369–372.
  60. P. N. Francis, A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, “An observational and theoretical study of the radiative properties of cirrus: some results from ICE’89,” Q. J. R. Meteorol. Soc. 120, 809–848 (1994).
  61. D. L. Mitchell and W. P. Arnott, “A model prediction the evolution of ice particle size spectra and radiative properties of cirrus cloud. II. Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51, 817–832 (1994).
  62. A. J. Baran, P. Francis, and P. Yang, “A process study of the dependence of ice crystal absorption on particle geometry: application to aircraft radiometric measurements of cirrus clouds in the terrestrial window region,” J. Atmos. Sci. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited