OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2674–2682

Bandwidth estimation for ultra-high-speed lithium niobate modulators

Shyqyri Haxha, B. M. Azizur Rahman, and Kenneth T. V. Grattan  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2674-2682 (2003)
http://dx.doi.org/10.1364/AO.42.002674


View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of velocity matching, impedance matching, conductor loss, and dielectric loss on the optical bandwidth of an ultra-high-speed lithium niobate modulator are reported. It is shown that both dielectric loss and impedance matching play a key role for velocity-matched high-speed modulators with low conductor loss. The effects of etch depth, buffer thickness, electrode width, and the gap between the electrodes on device performance are also illustrated.

© 2003 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.2240) Optical devices : Faraday effect
(230.4110) Optical devices : Modulators

History
Original Manuscript: September 18, 2002
Revised Manuscript: December 11, 2002
Published: May 20, 2003

Citation
Shyqyri Haxha, B. M. Azizur Rahman, and Kenneth T. V. Grattan, "Bandwidth estimation for ultra-high-speed lithium niobate modulators," Appl. Opt. 42, 2674-2682 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Dagli, “Wide-bandwidth laser and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999). [CrossRef]
  2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000). [CrossRef]
  3. K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998). [CrossRef]
  4. O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995). [CrossRef]
  5. K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995). [CrossRef]
  6. M. Minakata, “Recent progress of 40-GHz high-speed LiNbO3 optical modulator,” in Active and Passive Optical Components for WDM Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamato, eds., Proc. SPIE4532, 16–27 (2001). [CrossRef]
  7. M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999). [CrossRef]
  8. T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992). [CrossRef]
  9. A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990). [CrossRef]
  10. O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1997).
  11. P. Daly, “Hybrid-mode analysis of microstrip by finite-element method,” IEEE Microwave Theory Tech. 19, 19–25 (1971). [CrossRef]
  12. Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986). [CrossRef]
  13. B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984). [CrossRef]
  14. N. Anwar, S. S. A. Obayya, S. Haxha, C. Themistos, B. M. A. Rahman, K. T. V. Grattan, “The effect of fabrication parameters on a ridge Mach–Zender interferometric (MZI) modulator,” J. Lightwave Technol. 20, 826–833 (2002). [CrossRef]
  15. X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995). [CrossRef]
  16. J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990). [CrossRef]
  17. K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited