OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2702–2707

Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers

Stuart D. Jackson and Simon Mossman  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2702-2707 (2003)
http://dx.doi.org/10.1364/AO.42.002702


View Full Text Article

Enhanced HTML    Acrobat PDF (119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the slope efficiency and the pump power at threshold for a number of Tm3+-doped silica double-clad fiber lasers that incorporate fibers that have a range of Tm3+ concentrations. We obtain a slope efficiency for the ∼2-μm 3H43H6 laser transition that is greater than the Stokes efficiency limit for a Tm3+ concentration as low as 1.3 wt. %. These results indicate that the cross relaxation process, 3F4, 3H63H4, 3H4, has a significant effect on the efficiency of the laser despite the relatively short lifetime of the 3F4 energy level. Energy migration of the excitation at the 3F4 level through the process 3F4, 3H63H6, 3F4 may be enhancing the cross-relaxation mechanism. We also show the importance of reducing the level of clustering of the Tm3+ ion when it is doped into silica by use of appropriate amounts of Al3+ codopant. For Tm3+ concentrations of >1 wt. %, Al3+/Tm3+ concentration ratios of >10 are recommended for reducing scattering losses, quenching the 3H4 lifetime, or both.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3510) Lasers and laser optics : Lasers, fiber

History
Original Manuscript: October 8, 2002
Revised Manuscript: December 23, 2002
Published: May 20, 2003

Citation
Stuart D. Jackson and Simon Mossman, "Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers," Appl. Opt. 42, 2702-2707 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2702


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Pask, J. L. Archambault, D. C. Hanna, L. Reekie, P. S. J. Russell, J. E. Townsend, A. C. Tropper, “Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region,” Electron. Lett. 30, 863–865 (1994). [CrossRef]
  2. S. D. Jackson, T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464 (1998). [CrossRef]
  3. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 μm,” Electron. Lett. 36, 711–712 (2002). [CrossRef]
  4. J. Xu, M. Prabhu, J. Lu, K. Ueda, D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40, 1983–1988 (2001). [CrossRef]
  5. B. M. Antipenko, “Spectroscopic schemes for excitation of laser transitions having a high quantum efficiency of the pumping bands,” Bull. Acad. Sci. USSR Phys. Ser. 48, 124–129 (1984).
  6. E. W. Duczynski, G. Huber, V. G. Ostroumov, I. A. Shcherbakov, “Cw double cross pumping of the 5I7–5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett. 48, 1562–1563 (1986). [CrossRef]
  7. G. Huber, E. W. Duczynski, P. Mitzscherlich, H. O. Teichmann, D. Lumma, “Room-temperature 2-μm Ho:YAG and 3-μm Er:YAG lasers,” J. Phys. Colloq. 48, C7/347–349 (1987). [CrossRef]
  8. B. M. Antipenko, A. S. Glebov, R. V. Dumbravyanu, B. P. Sobolev, T. V. Uvarova, “Spectroscopy and lasing characteristics of BaEr2F8:Tm:Ho crystals,” Sov. J. Quantum Electron. 17, 424–427 (1987). [CrossRef]
  9. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987). [CrossRef] [PubMed]
  10. G. Huber, E. W. Duczynski, K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988). [CrossRef]
  11. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988). [CrossRef]
  12. J. Y. Allain, M. Monerie, H. Poignant, “High-efficiency cw thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04 μm,” Electron. Lett. 27, 1513–1515 (1991). [CrossRef]
  13. R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, T. A. King, “Thulium sensitised holmium-doped cw fluoride fibre laser of high efficiency,” Electron. Lett. 28, 2231–2232 (1992). [CrossRef]
  14. R. C. Stoneman, L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990). [CrossRef] [PubMed]
  15. P. J. M. Suni, S. W. Henderson, “1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser,” Opt. Lett. 16, 817–819 (1991). [CrossRef] [PubMed]
  16. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997). [CrossRef]
  17. K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, E. Lau, S. W. Toh, B. T. Toh, A. Chang, “120-W continuous-wave diode-pumped Tm:YAG laser,” Opt. Lett. 25, 1591–1593 (2000). [CrossRef]
  18. V. Doya, O. Legrand, F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26, 872–874 (2001). [CrossRef]
  19. S. D. Jackson, T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999). [CrossRef]
  20. B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The fabrication, assessment and optical properties of high-concentration Nd3+- and Er3+-doped silica-based fibres,” Mater. Lett. 6, 139–144 (1988). [CrossRef]
  21. J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50, 297–308 (1991). [CrossRef]
  22. D. F. de Sousa, R. Lebullenger, A. C. Hernandes, L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ to Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B 65, 094204 (2002). [CrossRef]
  23. D. F. de Sousa, L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66, 024207 (2002). [CrossRef]
  24. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, T. Handa, “Aluminium or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986). [CrossRef]
  25. R. S. Quimby, W. J. Miniscalco, B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76, 4472–4478 (1994). [CrossRef]
  26. S. D. Jackson, T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178–2188 (1999). [CrossRef]
  27. M. Shimizu, M. Yamada, M. Horiguchi, E. Sugita, “Concentration effect on optical amplification characteristics of Er-doped silica single-mode fibers,” IEEE Photon. Technol. Lett. 2, 43–45 (1990). [CrossRef]
  28. J. Wang, W. S. Brocklesby, J. R. Lincoln, J. E. Townsend, D. N. Payne, “Local structures of rare-earth ions in glasses: the ‘crystal-chemistry’ approach,” J. Non-Cryst. Solids 163, 261–267 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited