OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2819–2828

Optimization of CH fluorescence diagnostics in flames: range of applicability and improvements with hydrogen addition

Jeffrey A. Sutton and James F. Driscoll  »View Author Affiliations

Applied Optics, Vol. 42, Issue 15, pp. 2819-2828 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study quantifies the range of premixed flame conditions for which CH fluorescence diagnostics are applicable, and it shows that the CH fluorescence signal can be increased if some of the hydrocarbon fuel is replaced with hydrogen. The CH fluorescence signal is found to be adequate for fuel-air equivalence ratios (ϕ) as small as 0.85 for both methane-air and propane-air flames. The CH signal increases until a maximum at ϕ = 1.25 and ϕ = 1.35 for methane-air and propane-air flames, respectively, and then decreases for richer conditions. A strategy to increase the CH fluorescence signal and decrease interference from soot precursors is proposed by addition of the proper amount of hydrogen to the hydrocarbon fuel. Hydrogen addition reduces the background signal from soot precursors by as much as a factor of 10 and increases the CH fluorescence signal by as much as 80%. The normalized CH fluorescence measurements are compared with computations that utilize GRI-mech 3.0 chemistry. Sources of experimental uncertainties are discussed.

© 2003 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.0300) Spectroscopy : Spectroscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: July 1, 2002
Revised Manuscript: October 23, 2002
Published: May 20, 2003

Jeffrey A. Sutton and James F. Driscoll, "Optimization of CH fluorescence diagnostics in flames: range of applicability and improvements with hydrogen addition," Appl. Opt. 42, 2819-2828 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Schefer, M. Namazian, J. Kelly, “Stabilization of lifted turbulent-jet flames,” Combust. Flame 99, 75–86 (1994). [CrossRef]
  2. S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourgette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349. [CrossRef]
  3. M. S. Mansour, N. Peters, Y. C. Chen, “Investigation of scalar mixing in the thin reaction zones regime using a simultaneous CH-LIF/Rayleigh laser technique,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 767–773. [CrossRef]
  4. Y. C. Chen, M. S. Mansour, “Simultaneous Rayleigh scattering and laser-induced CH fluorescence for reaction zone imaging in high-speed premixed hydrocarbon flames,” Appl. Phys. B 64, 599–605 (1997). [CrossRef]
  5. K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000). [CrossRef]
  6. J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000). [CrossRef]
  7. N. H. Heberle, G. P. Smith, J. B. Jeffries, D. R. Crosley, R. W. Dibble, “Simultaneous laser-induced fluorescence and Rayleigh scattering measurements of structure in partially premixed flames,” Appl. Phys. B 71, 733–740 (2000). [CrossRef]
  8. J. Luque, D. R. Crosley, “Absolute CH concentrations in low pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996). [CrossRef]
  9. J. Du, R. L. Axelbaum, “The effect of flame structure on soot-particle inception in diffusion flames,” Combust. Flame 100, 367–375 (1995). [CrossRef]
  10. R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, S. F. Miller, Chemkin Collection, Release 3.7 (Reaction Design, Inc., San Diego, Calif., 2002).
  11. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech Home Page, http://www.me.berkeley.edu/gri_mech/ .
  12. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000). [CrossRef]
  13. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, http://www.me.berkeley.edu/gri_mech/ .
  14. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4-O2-N2 and CH4-NO-O2-N2 flames,” Combust. Flame 126, 1725–1735 (2001). [CrossRef]
  15. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990). [CrossRef]
  16. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-resolved CH (A2Δ and B2∑-) laser-induced fluorescence in low-pressure hydrocarbon flames,” Appl. Opt. 27, 3679–3689 (1989). [CrossRef]
  17. M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001). [CrossRef]
  18. P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Combust. Flame 34, 253–264 (1979). [CrossRef]
  19. N. M. Laurendeau, J. E. M. Goldsmith, “Comparison of hydroxyl concentration profiles using five laser-induced fluorescence methods in a lean subatmospheric-pressure H2/O2/Ar flame,” Combust. Sci. Technol. 63, 139–152 (1989). [CrossRef]
  20. J. T. Salmon, N. M. Laurendeau, “Analysis of probe volume effects associated with laser-saturated fluorescence measurements,” Appl. Opt. 24, 65–73 (1985). [CrossRef] [PubMed]
  21. C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992). [CrossRef] [PubMed]
  22. M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).
  23. R. V. Ravikrishna, C. S. Cooper, N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999). [CrossRef]
  24. Y. Takubo, H. Yano, H. Matsuoka, M. Shimazu, “Saturation behavior of laser-induced CH fluorescence in a propane-air flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163–168 (1983). [CrossRef]
  25. M. W. Renfro, “Fluorescence-lifetime measurements in atmospheric-pressure flames using nanosecond-pulsed lasers,” Appl. Phys. B 74, 167–174 (2002). [CrossRef]
  26. J. M. Harris, F. E. Lytle, “Measurement of subnanosecond fluorescence decays by sampled single-photon detection,” Rev. Sci. Instrum. 48, 1469–1476 (1977). [CrossRef]
  27. B. Lewis, G. von Elbe, Combustion, Flames and Explosions of Gases, 3rd ed. (Academic, New York, 1987).
  28. J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, D. R. Crosley, “Collisional processes near the CH B2 ∑-v′ = 0, 1 predissociation limit in laser-induced fluorescence flame diagnostics,” Appl. Phys. B 71, 85–94 (2000). [CrossRef]
  29. J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” Stanford Research Institute Report MP99–009 (Stanford Research Institute, Menlo Park, Calif., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited