OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2835–2842

Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air

Alexander Portnov, Salman Rosenwaks, and Ilana Bar  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2835-2842 (2003)
http://dx.doi.org/10.1364/AO.42.002835


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied to nitroaromatic (NC) and polycyclic aromatic hydrocarbon (PAH) samples in ambient air to characterize their resultant emission. Compounds covering various surfaces were ablated by use of the second (532-nm) or the fourth (266-nm) harmonic of a nanosecond pulsed Nd:YAG laser. The emission consisted of spectral features related mostly to CN and C2 molecular fragments and to C, H, N, and O atomic fragments. The transitions of the molecular fragments correspond to the CN (B 2+-X2+) violet system and the C2 (d3Π g -a3Π u ) Swan system; the intensity of the former is higher in NCs than in PAHs. The intensity ratios between C2 and CN and between O and N correlate to the molecular structure, suggesting the possibility of distinguishing one chemical class from another and in optimum cases even identifying specific compounds by use of LIBS.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission

History
Original Manuscript: September 3, 2002
Revised Manuscript: December 17, 2002
Published: May 20, 2003

Citation
Alexander Portnov, Salman Rosenwaks, and Ilana Bar, "Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air," Appl. Opt. 42, 2835-2842 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas: Physical, Chemical and Biological Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.
  2. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997). [CrossRef]
  3. I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997). [CrossRef]
  4. M. Corsi, V. Palleschi, E. Tognoni, eds., Preface to special issue on laser-induced plasma spectroscopy, Spectrochim. Acta B 56, 565–566 (2001).
  5. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001). [CrossRef]
  6. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997). [CrossRef]
  7. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998). [CrossRef]
  8. H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998). [CrossRef]
  9. C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998). [CrossRef]
  10. M. P. Nelson, W. C. Bell, M. L. McLester, M. L. Myrick, “Single-shot multiwavelength imaging of laser plumes,” Appl. Spectrosc. 52, 179–186 (1998). [CrossRef]
  11. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–579 (1987). [CrossRef]
  12. H. Zhang, F.-Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999). [CrossRef]
  13. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001). [CrossRef]
  14. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996). [CrossRef]
  15. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998). [CrossRef]
  16. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998). [CrossRef]
  17. C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996). [CrossRef]
  18. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
  19. C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000). [CrossRef] [PubMed]
  20. R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).
  21. R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001). [CrossRef]
  22. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001). [CrossRef]
  23. R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001). [CrossRef]
  24. R. J. Locke, J. B. Morris, B. E. Forch, A. W. Miziolek, “Ultraviolet laser microplasma gas-chromatography detector detection of species—specific fragment emission,” Appl. Opt. 29, 4987–4992 (1990). [CrossRef] [PubMed]
  25. L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).
  26. M. Tran, Q. Sun, B. W. Smith, J. D. Winfordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001). [CrossRef]
  27. U.S. Environmental, Protection. Agency, http://www.epa.gov//ttn/atw/188polls.html .
  28. Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 112.
  29. I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).
  30. J. Luque, D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.42), Rep. MP 98-021 (SRI International, Menlo Park, Calif., 1998).
  31. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998). [CrossRef]
  32. B. J. van der Meer, “Emission spectroscopy as a tool to detect decomposition products of laser irradiated explosives,” in Chemistry and Physics of Energetic Materials, S. N. Bulusu, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 653–683. [CrossRef]
  33. V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999). [CrossRef]
  34. National Institute of Standards and Technology Atomic Spectra Database ( http://physics.nist.gov/cgi-bin/AtData/main_asd) .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited