OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2871–2880

Microscopic origin of light scattering in tissue

Alois K. Popp, Megan T. Valentine, Peter D. Kaplan, and David A. Weitz  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 2871-2880 (2003)
http://dx.doi.org/10.1364/AO.42.002871


View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A newly designed instrument, the static light-scattering (SLS) microscope, which combines light microscopy with SLS, enables us to characterize local light-scattering patterns of thin tissue sections. Each measurement is performed with an illumination beam of 70-μm diameter. On these length scales, tissue is not homogeneous. Both structural ordering and small heterogeneities contribute to the scattering signal. Raw SLS data consist of a two-dimensional intensity distribution map I(θ, φ), showing the dependence of the scattered intensity I on the scattering angle θ and the azimuthal angle φ. In contrast to the majority of experiments and to simulations that consider only the scattering angle, we additionally perform an analysis of the azimuthal dependence I(φ). We estimate different contributions to the azimuthal scattering variation and show that a significant fraction of the azimuthal amplitude is the result of tissue structure. As a demonstration of the importance of the structure-dependent part of the azimuthal signal, we show that this function of the scattered light alone can be used to classify tissue types with surprisingly high specificity and sensitivity.

© 2003 Optical Society of America

OCIS Codes
(170.4730) Medical optics and biotechnology : Optical pathology
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle
(180.0180) Microscopy : Microscopy

History
Original Manuscript: October 7, 2002
Revised Manuscript: December 19, 2002
Published: June 1, 2003

Citation
Alois K. Popp, Megan T. Valentine, Peter D. Kaplan, and David A. Weitz, "Microscopic origin of light scattering in tissue," Appl. Opt. 42, 2871-2880 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-2871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppard, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef]
  2. A. M. Siegel, J. J. A. Marotas, D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999), http://www.opticsexpress.org . [CrossRef]
  3. S. J. Matcher, “Nonuniqueness in optical tomography: relevance of the P1 approximation,” Opt. Lett. 24, 1729–1731 (1999). [CrossRef]
  4. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  5. G. Videen, D. Ngo, “Light scattering multipole solution for a cell,” J. Biomed. Opt. 3, 212–220 (1998). [CrossRef] [PubMed]
  6. B. Chance, N. G. Wang, M. Maris, S. Nioka, S. Sevick, “Quantification of tissue optical characteristics and hemoglobin desaturation by time- and frequency-resolved multi-wavelength spectrophotometry,” Adv. Exp. Med. Biol. 317, 297–304 (1992). [CrossRef]
  7. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Optics 36, 10–20 (1997). [CrossRef]
  8. W.-F. Cheung, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  9. F. Bevilacqua, P. Marquet, C. Depreursinge, E. B. De Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array. II. Measurements on biological tissue,” Opt. Eng. 34, 2064–2069 (1995). [CrossRef]
  10. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogenous and heterogenous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  11. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solutions and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef]
  12. F. Bevilacqua, C. Depreursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999). [CrossRef]
  13. V. V. Tuchin, “Light scattering studies of tissues,” Phys. Usp. 40, 494–515 (1997). [CrossRef]
  14. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm,” Appl. Opt. 36, 386–396 (1997). [CrossRef] [PubMed]
  15. S. P. Treweek, J. C. Barbenel, “Direct measurement of the optical properties of breast skin,” Med. Biol. Eng. Comp. 34, 285–289 (1995). [CrossRef]
  16. D. J. Smithies, P. H. Butler, “Modelling the distribution of laser in port wine stains with the Monte Carlo method,” Phys. Med. Biol. 40, 701–731 (1995). [CrossRef] [PubMed]
  17. E. Luther, L. A. Kamentsky, “Resolution of mitotic cells using laser scanning cytometry,” Cytometry 23, 272–278 (1996). [CrossRef] [PubMed]
  18. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  19. F. Bevilacqua, P. Marquet, O. Coquoz, C. Depreursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997). [CrossRef] [PubMed]
  20. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  21. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnostic of bladder cancer by elastic light scattering,” Laser Surg. Med. 17, 350–357 (1995). [CrossRef]
  22. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. VanDam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998). [CrossRef]
  23. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997). [CrossRef] [PubMed]
  24. A. H. Hielscher, A. E. Eick, J. R. Mourant, D. Shen, J. P. Freyer, I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1998), http://www.opticsexpress.org . [CrossRef]
  25. M. T. Valentine, A. K. Popp, P. D. Kaplan, D. A. Weitz, “Microscope-based static light scattering apparatus,” Opt. Lett. 26, 890–892 (2001). [CrossRef]
  26. A. K. Popp, M. T. Valentine, P. D. Kaplan, D. A. Weitz, “Light scattering microscope to investigate heterogeneities of tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 22–33 (2000). [CrossRef]
  27. P. D. Kaplan, V. Trappe, D. A. Weitz, “Light scattering microscope,” Appl. Opt. 38, 4151–4157 (1999). [CrossRef]
  28. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  29. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987). [CrossRef] [PubMed]
  30. R. Marchesini, A. Bertoni, S. Andreola, E. Melloin, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989). [CrossRef] [PubMed]
  31. P. Dimon, S. K. Sinha, D. A. Weitz, C. R. Safinya, G. S. Smith, W. A. Varady, H. M. Lindsay, “Structure of aggregated gold colloids,” Phys. Rev. Lett. 57, 595–598 (1986). [CrossRef] [PubMed]
  32. T. Nicolai, D. Durand, J.-C. Gimel, “Scattering properties and modelling of aggregating and gelling systems,” in Lightscattering: Principles and Development, W. Brown, ed. (Oxford University Press, New York, 1996).
  33. M. Takeda, T. Norisuye, M. Shibayama, “Critical dynamics of cross-linked polymer chains near the gelation threshold,” Macromol. 33, 2909–2915 (2000). [CrossRef]
  34. J. Teixeira, “Experimental methods for studying fractal aggregates,” in On Growth and Form, H. E. Stanley, N. Ostrowski, eds. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986), pp. 145–162.
  35. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).
  36. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  37. R. K. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47, 103–120 (2000).
  38. H. C. van de Hulst, Lightscattering by Small Particles (Dover, New York, 1981).
  39. W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am. J. Phys. 53, 468–478 (1985). [CrossRef]
  40. H. Liu, D. A Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995). [CrossRef] [PubMed]
  41. N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Janson, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical cancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple wave lengths,” Photchem. Photobiol. 64, 720–735 (1996). [CrossRef]
  42. N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited