OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2923–2930

Haar transform analysis of photon time-of-flight measurements for quantification of optical properties in scattering media

Claudia E. W. Gributs and David H. Burns  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 2923-2930 (2003)
http://dx.doi.org/10.1364/AO.42.002923


View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to independently quantify the absorption and the scattering properties of samples based on the analysis of the Haar transform (HT) of photon time-of-flight (TOF) distributions is described. A series of reflectance photon TOF measurements were acquired from absorbing/scattering milk samples of known composition (0 < μ a < 0.025 mm-1; 100 < μ s < 250 mm-1). The HT of the profiles was calculated, and the regression based on the most parsimonious subset of wavelets was determined by the genetic algorithm (GA). In addition, the utility of computing the logarithm of the profiles or of the absolute value of the wavelet coefficients before the GA was studied. Results show that the absorption coefficient could be estimated with a coefficient of variation (C.V.) of 6.7% and an r2 of 0.99 by use of the log of selected wavelets of frequency less than 800 MHz. Scattering coefficients were estimated with a C.V. of 2.3% and an r2 of 0.99 with the log of wavelets of frequency less than 400 MHz. The above results suggest that a simplified instrument based on low-frequency switches could be developed to quantify the optical properties of highly scattering media.

© 2003 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(170.1580) Medical optics and biotechnology : Chemometrics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved

History
Original Manuscript: August 7, 2002
Revised Manuscript: November 4, 2002
Published: June 1, 2003

Citation
Claudia E. W. Gributs and David H. Burns, "Haar transform analysis of photon time-of-flight measurements for quantification of optical properties in scattering media," Appl. Opt. 42, 2923-2930 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-2923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981). [CrossRef] [PubMed]
  2. P. Parsa, S. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989). [CrossRef] [PubMed]
  3. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997). [CrossRef] [PubMed]
  4. J. M. Olinger, P. R. Griffiths, T. Burger, “Theory of diffuse reflection in the NIR region,” in Handbook of Near-Infrared Analysis, 2nd ed., D. A. Burns, E. W. Ciurczak, eds. (Marcel Dekker, New York, N.Y., 2001), pp. 19–51.
  5. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  6. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of neural network to determine tissue optical properties for spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992). [CrossRef] [PubMed]
  7. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995). [CrossRef] [PubMed]
  8. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991). [CrossRef] [PubMed]
  9. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994). [CrossRef]
  10. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992). [CrossRef] [PubMed]
  11. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time-of-flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995). [CrossRef] [PubMed]
  12. L. Leonardi, D. H. Burns, “Quantitative constituent measurements in scattering media from statistical analysis of photon time-of-flight distributions,” Anal. Chim. Acta 348, 543–551 (1997). [CrossRef]
  13. L. Leonardi, D. H. Burns, “Quantitative measurements in scattering media: photon time-of-flight analysis with analytical descriptors,” Appl. Spectrosc. 53, 628–636 (1999). [CrossRef]
  14. C. S. McNulty, G. R. Mauze, “Application of wavelet analysis for determining glucose concentration of aqueous solutions using NIR spectroscopy,” in infrared spectroscopy: New Tool in Medicine, H. H. Mantsch, M. Jackson, eds. Proc. SPIE3257, 167–176 (1998). [CrossRef]
  15. U. Depczynski, K. Jetter, K. Molt, A. Niemoller, “Quantitative analysis of near infrared spectra by wavelet coefficient regression using a genetic algorithm,” Chemom. Intell. Lab. Syst. 47, 179–187 (1999). [CrossRef]
  16. S. K. Nath, R. M. Vasu, M. Pandit, “Wavelet based compression and denoising of optical tomography data,” Opt. Commun. 167, 37–46 (1999). [CrossRef]
  17. Y. Wang, L. Ma, S. Shi, “An optical method for production of Haar wavelet,” Opt. Commun. 204, 107–110 (2002). [CrossRef]
  18. B. K. Alsberg, A. M. Woodward, D. B. Kell, “An introduction to wavelet transforms for chemometricians: a time-frequency approach,” Chemom. Intell. Lab. Syst. 37, 215–239 (1997). [CrossRef]
  19. D. A. Sadler, P. R. Boulo, J. S. Soraghan, D. Littlejohn, “Tutorial guide to the use of wavelet transforms to determine peak shape parameters for interference detection in graphite-furnace atomic absorption spectrometry,” Spectrochim. Acta Part B 53, 821–835 (1998). [CrossRef]
  20. H.-W. Tan, S. D. Brown, “Wavelet analysis applied to removing non-constant, varying spectroscopic background in multivariate calibration,” J. Chemom. 16, 228–240 (2002). [CrossRef]
  21. B. Walczak, D. L. Massart, “Noise suppression and signal compression using the wavelet packet transform,” Chemom. Intell. Lab. Syst. 36, 81–94 (1997). [CrossRef]
  22. A. K.-M. Leung, F.-T. Chau, J.-B. Gao, T.-M. Shih, “Application of wavelet transform in infrared spectrometry: spectral compression and library search,” Chemom. Intell. Lab. Syst. 43, 69–88 (1998). [CrossRef]
  23. F. T. Chau, J. B. Gao, T. M. Shih, J. Wang, “Compression of infrared spectral data using the fast wavelet transform method,” Appl. Spectrosc. 51, 649–659 (1997). [CrossRef]
  24. B. K. Alsberg, A. M. Woodward, M. K. Winson, J. J. Rowland, D. B. Kell, “Variable selection in wavelet regression models,” Anal. Chim. Acta 368, 29–44 (1998). [CrossRef]
  25. B. K. Alsberg, “Parsimonious multiscale classification models,” J. Chemom. 14, 529–539, (2000). [CrossRef]
  26. G. Strang, “Wavelets. The transformation of signals into a sum of small, overlapping waves offers a new method for analyzing, storing and transmitting information,” Am. Sci. 82, 250–255 (1994).
  27. A. Graps, “An introduction to wavelets,” IEEE Comput. Sci. Eng. 2, 50–61 (1995). [CrossRef]
  28. M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. van Doorn, H. E. Niesler, “Optical transmission properties of homogenized milk used as a phantom material in visible wavelength imaging,” Australas. Phys. Eng. Sci. Med. 18, 39–44 (1995). [PubMed]
  29. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990). [CrossRef]
  30. J. A. Räty, K.-E. Peiponen, “Reflectance study of milk in the UV-visible range,” Appl. Spectrosc. 53, 1123–1127 (1999). [CrossRef]
  31. E. Aboufadel, S. Schlicker, Discovering Wavelets (Wiley, N.Y., 1999). [CrossRef]
  32. J. S. Walker, A Primer on Wavelets and their Scientific Applications (Chapman Hall, Boca Raton, 1999). [CrossRef]
  33. B. K. Lavine, A. J. Moores, “Genetic algorithms in analytical chemistry,” Anal. Lett. 32, 433–445 (1999). [CrossRef]
  34. C. B. Lucasius, G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19, 1–33 (1993). [CrossRef]
  35. C. B. Lucasius, G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization.,” Chemom. Intell. Lab Syst. 25, 99–145 (1994). [CrossRef]
  36. J.-S. R. Jang, “Derivative-free optimization,” in Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence, J.-S. R. Jang, C.-T. Sun, E. Mizutani, eds. (Prentice Hall, N.Y., 1997), pp. 175–180.
  37. Q. Ding, G. W. Small, “Genetic algorithm-based wavelength selection for the near-infrared determination of glucose in biological matrixes: initialization strategies and effects of spectral resolution,” Anal. Chem. 70, 4472–4479 (1998). [CrossRef] [PubMed]
  38. D. B. Hibbert, “Genetic algorithms in chemistry,” Chemom. Intell. Lab. Syst. 19, 277–293 (1993). [CrossRef]
  39. R. Judson, “Genetic algorithms and their use in chemistry,” Rev. Comput. Chem. 10, 1–73, (1997).
  40. D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited