OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2931–2939

Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics

Guoqiang Yu, Turgut Durduran, Daisuke Furuya, Joel H. Greenberg, and Arjun G. Yodh  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 2931-2939 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel frequency-domain multiplexing system has been developed for in vivo measurements of rapid cerebral hemodynamics. The instrument operates in the frequency-domain with three optical wavelengths, six source positions, and two detectors. Frequency-division multiplexing was used to modulate three wavelengths (690, 786, and 830 nm) at slightly different frequencies around 70 MHz. The three laser output beams were combined and switched into different source positions by use of fast optical switches (switch time <10 ms). Three narrowband, in-phase and in-quadrature demodulators decode the modulated signals. Our full-frame-acquisition rate is 2.5 Hz, with flexibility for acquisition rates greater than 50 Hz with smaller detection areas. We evaluate the performance of the instrument with tissue phantoms, and then employ the system to measure in vivo cerebral blood oxygenation during forepaw stimulation of a rat’s brain.

© 2003 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5380) Medical optics and biotechnology : Physiology
(170.6960) Medical optics and biotechnology : Tomography

Original Manuscript: August 20, 2002
Revised Manuscript: January 9, 2003
Published: June 1, 2003

Guoqiang Yu, Turgut Durduran, Daisuke Furuya, Joel H. Greenberg, and Arjun G. Yodh, "Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics," Appl. Opt. 42, 2931-2939 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Oda, Y. Wada, S. Takeuchi, Y. Oikawa, N. Sakauchi, Y. Ito, I. Konishi, Y. Tsunazawa, T. Kusaka, K. Isobe, S. Itoh, S. Onishi, “Near-infrared optical imager for cerebral blood flow and oxygenation detection,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 371–379 (2001). [CrossRef]
  2. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain methods,” Phys. Med. Biol. 44, 1543–1563 (1999). [CrossRef] [PubMed]
  3. D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001). [CrossRef] [PubMed]
  4. M. Jones, J. Berwick, D. Johnston, J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13, 1002–1015 (2001). [CrossRef] [PubMed]
  5. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998). [CrossRef] [PubMed]
  6. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993). [CrossRef] [PubMed]
  7. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 [CrossRef] [PubMed]
  8. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995). [CrossRef] [PubMed]
  9. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000). [CrossRef] [PubMed]
  10. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat Med. 29, 335–343 (2001). [CrossRef] [PubMed]
  11. J. B. Mandeville, J. Marota, “Vascular filters of functional MRI: spatial localization using BOLD and CBV contrast,” Magn. Reson. Med. 42, 591–598 (1999). [CrossRef] [PubMed]
  12. T. Q. Duong, D. S. Kim, K. U. Urbil, S. G. Kim, “Spatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response,” Magn. Reson. Med. 44, 231–242 (2002). [CrossRef]
  13. N. Vasilis, A. G. Yodh, M. Schnall, X. H. Ma, B. Chance, “Calculation of local optical properties in highly scattering media using a-priori structural information for application to simultaneous NIR-MR breast examination,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3566, 200–206 (1998).
  14. C. R. Honig, C. L. Odoroff, J. L. Frierson, “Capillary recruitment in exercise: rate, extent, uniformity and relation to blood flow,” Am. J. Physiol. 238, H31–H42 (1980). [PubMed]
  15. Y. Kakihana, M. M. Kessler, A. Krug, H. Yamada, T. Oda, N. Yoshimura, “Dynamic changes in intracapillary hemoglobin oxygenation in human skin following various temperature changes,” Microvasc. Res. 56, 104–112 (1998). [CrossRef] [PubMed]
  16. B. M. Ances, J. A. Detre, K. Takahashi, J. H. Greenberg, “Transcranial laser Doppler mapping of activation flow coupling of the rat somatosensory cortex,” Neurosci. Lett. 257, 25–28 (1998). [CrossRef] [PubMed]
  17. R. B. King, G. M. Raymond, J. B. Bassingthwaighte, “Modeling blood flow heterogeneity,” Ann. Biomed. Eng. 24, 352–372 (1996). [CrossRef] [PubMed]
  18. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001). [CrossRef] [PubMed]
  19. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” in Advances in Experimental Medicine and Biology, Oxygen Transport to Tissue Volume XXIII, D. F. Wilson, S. M. Evans, J. Biaglow, A. Pastuszko, eds. (Plenum, 2002), pp. 293–298.
  20. J. P. Culver, C. Cheung, T. Durduran, D. Furuya, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of hemoglobin concentrations, and cerebral blood flow in rat brain during focal ischemia,” in Digest of OSA Biomedical Topical Meetings, (Optical Society of America, Washington, D.C., 2002), pp. 170–172.
  21. T. Durduran, G. Yu, J. P. Culver, C. Cheung, D. Furuya, J. H. Greenberg, A. G. Yodh, “Hemodynamics of cortical spreading depression and forepaw stimulation,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 164–166.
  22. T. Durduran, G. Yu, J. P. Culver, C. Cheung, D. Furuya, J. H. Greenberg, A. G. Yodh, “Brain hemodynamics and oxygen metabolism: hybrid approach,” in in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 47–49.
  23. S. R. Arridge, W. R. B. Lionheart, “Non-uniqueness in diffusion-based optical tomography,” Opti. Lett. 23, 882–884 (1998). [CrossRef]
  24. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  25. V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998). [CrossRef]
  26. F. E. W. Schmit, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000). [CrossRef]
  27. T. O. McBride, B. W. Pogue, S. D. Jiang, U. L. Osterberg, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001). [CrossRef]
  28. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49 . [CrossRef] [PubMed]
  29. M. Wolf, U. Wolf, J. H. Choi, L. P. Safonova, R. Gupta, V. Toronov, A. Michalos, L. A. Paunescu, E. Gratton, “Functional fast neuronal signals in the visual and motor cortex detected by frequency-domain near-infrared spectroscopy,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002) pp. 205–207.
  30. H. Koizumi, A. Maki, T. Yamamoto, “Optical tomography: practical problems and novel applications,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 294–296.
  31. A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-287 . [CrossRef] [PubMed]
  32. C. H. Schmitz, M. Locker, J. Mlasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 1–11 (2002). [CrossRef]
  33. Y. Yang, H. L. Liu, X. D. Li, B. Chance, “Low cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng. 36, 1562–1569 (1997). [CrossRef]
  34. Mini-Circuits Division of Scientific Components, RF/IF Designer’s Handbook (Scientific Components, Mini-Circuits, New York, 1997).
  35. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2862 (2002). [CrossRef] [PubMed]
  36. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001). [CrossRef] [PubMed]
  37. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  38. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  39. J. A. Detre, B. M. Ances, K. Takahashi, J. H. Greenberg, “Signal averaged laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex,” Brain Res. 796, 91–98 (1998). [CrossRef] [PubMed]
  40. B. M. Ances, D. G. Buerk, J. H. Greenberg, J. A. Detre, “Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats,” Neurosci. Lett. 306, 106–110 (2001). [CrossRef] [PubMed]
  41. G. Yu, T. Durduran, D. Furuya, R. Choe, J. H. Greenberg, A. G. Yodh, “Frequency domain diffuse optical multiplexing system for rapid hemodynamics,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), pp. 184–186.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited