OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2951–2959

Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model

Sean Merritt, Frederic Bevilacqua, Anthony J. Durkin, David J. Cuccia, Ryan Lanning, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 2951-2959 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report coregistration of near-infrared diffuse optical spectroscopy (DOS) and magnetic resonance imaging (MRI) for the study of animal model tumors. A combined broadband steady-state and frequency-domain apparatus was used to determine tissue oxyhemoglobin, deoxyhemoglobin, and water concentration locally in tumors. Simultaneous MRI coregistration provided structural (T2-weighted) and contrast-enhanced images of the tumor that were correlated with the optical measurements. By use of Monte Carlo simulations, the optically sampled volume was superimposed on the MR images, showing precisely which tissue structure was probed optically. DOS and MRI coregistration measurements were performed on seven rats over 20 days and were separated into three tumor tissue classifications: viable, edematous, and necrotic. A ratio of water concentration to total hemoglobin concentration, as measured optically, was performed for each tissue type and showed values for edematous tissue to be greater than viable tissue (1.2 ± 0.49 M/μM versus 0.48 ± 0.15 M/μM). Tissue hemoglobin oxygen saturation (StO2) also showed a large variation between tissue types: viable tissue had an optically measured StO2 value of 61 ± 5%, whereas StO2 determined for necrotic tissue was 43 ± 6%.

© 2003 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Original Manuscript: September 6, 2002
Revised Manuscript: December 2, 2002
Published: June 1, 2003

Sean Merritt, Frederic Bevilacqua, Anthony J. Durkin, David J. Cuccia, Ryan Lanning, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu, "Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model," Appl. Opt. 42, 2951-2959 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Steen, D. A. Wilson, C. Bowser, J. P. Wehrle, J. D. Glickson, S. S. Rajan, “31P NMR Spectroscopic and near infrared spectrophotometric studies of effects of anesthetics on in vivo RIF-1 tumors. Relationship to tumor radiosensitivity,” NMR Biomed. 2, 87–92 (1989). [CrossRef] [PubMed]
  2. D. B. Jakubowski, A. E. Cerussi, F. Bevilacaua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, Beckman Laser Institute University of California at Irvine, 1002 Health Sciences Road, Irvine, Calif. 92612, are preparing a manuscript to be called “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study.”
  3. Z. Wang, M.-Y. Su, O. Nalcioglu, “Applications of dynamic contrast enhanced MRI in oncology: measurement of tumor oxygen tension,” Technol. Cancer Res. Treat. 1, 29–38 (2002).
  4. R. P. Mason, A. Constantinescu, S. Hunjan, D. Le, E. W. Hahn, P. P. Antich, C. Blum, P. Peschke, “Regional tumor oxygenation and measurement of dynamic changes,” Radiat. Res. 152, 239–249 (1999). [CrossRef] [PubMed]
  5. D. Zhao, A. Constantinescu, E. W. Hahn, R. P. Mason, “Tumor oxygen dynamics with respect to growth and respiratory challenge: investigation of the dunning prostate R3327-HI tumor,” Radiat. Res. 156, 510–520 (2001). [CrossRef] [PubMed]
  6. M.-Y. Su, J.-C. Jao, O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994). [CrossRef] [PubMed]
  7. M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schäffer, P. Vaupel, “Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix,” Cancer Res. 56, 4509–4515 (1996). [PubMed]
  8. J. M. Brown, “The hypoxic cell: a target for selective cancer therapy,” Cancer Res. 59, 5863–5870 (1999). [PubMed]
  9. T. Sako, T. Hamaoka, H. Higuchi, Y. Kurosawa, T. Katsumura, “Validity of NIR spectroscopy for quantitatively measuring muscle oxidative metabolic rate in exercise,” J. Appl. Physiol. 90, 338–344 (2001). [PubMed]
  10. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002). [CrossRef] [PubMed]
  11. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002). [CrossRef] [PubMed]
  12. A. Kleinschmidt, H. Obrig, M. Requardt, K.-L. Merboldt, U. Dirnagl, A. Villringer, J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 16, 817–826 (1996). [CrossRef] [PubMed]
  13. V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton, D. Hueber, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001). [CrossRef] [PubMed]
  14. Y. Xie, K. Sakatani, W. Lichty, H. Zuo, Z. Xie, J. Bai, “Near-infrared spectroscopy studies on cerebral blood oxygenation changes during brain activation: possible limitations of blood oxygenation level dependent functional magnetic resonance imaging,” Opt. Eng. 40, 2302–2307 (2001). [CrossRef]
  15. V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9, 417–427 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  16. D. J. Mehagnoul-Schipper, B. F. W. van der Kallen, W. N. J. M. Colier, M. C. van der Sluijs, L. J. Th. O. van Erning, H. O. M. Thijssen, B. Oeseburg, W. H. L. Hoefnagels, R. W. M. M. Jansen, “Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects,” Hum. Brain Map. 16, 14–23 (2002). [CrossRef]
  17. V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998). [CrossRef]
  18. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2780 (2000). [CrossRef] [PubMed]
  19. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001). [CrossRef] [PubMed]
  20. V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002). [CrossRef] [PubMed]
  21. B. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998). [CrossRef]
  22. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003). [CrossRef] [PubMed]
  23. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000). [CrossRef]
  24. T. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000). [CrossRef]
  25. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  26. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, H. M. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef] [PubMed]
  27. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  28. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  29. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–29 (1995). [CrossRef] [PubMed]
  30. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head”,Appl. Opt. 36, 21–31 (1997). [CrossRef] [PubMed]
  31. E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994). [CrossRef] [PubMed]
  32. F. Bevilacqua, J. S. You, B. J. Tromberg, V. Venugopalan, “Sampling of tissue volume by frequency-domain photon migration,” in Biomedical Topical Meetings, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000),pp.78–80.
  33. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  34. D. B. Jakubowski, “Development of broadband quantitative tissue optical spectroscopy for the non-invasive characterization of breast disease,” Ph. D. dissertation (University of California, Irvine, Irvine, Calif.,2002).
  35. T. H. Pham, R. Homung, M. W. Berns, Y. Tadir, B. J. Tromberg, “Monitoring tumor response during photodynamic therapy using near-infrared photon-migration spectroscopy,” Photochem. Photobiol. 73, 669–677 (2001). [CrossRef] [PubMed]
  36. Dorland’s Illustrated Medical Dictionary (Saunders, Philadelphia, 1994).
  37. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999). [CrossRef]
  38. A. Kienle, M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997). [CrossRef] [PubMed]
  39. T. Kuboki, K. Suzuki, K. Maekawa, M. Inoue-Minakuchi, C. O. Acero, Y. Yanagi, T. Wakasa, K. Kishi, H. Yatani, G. T. Clark, “Correlation of the near-infrared spectroscopy signal with signal intensity in T2-weighted magnetic resonance imaging of the human masseter muscle,” Arch. Oral. Biol. 46, 721–727 (2001). [CrossRef] [PubMed]
  40. E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999). [CrossRef] [PubMed]
  41. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000). [CrossRef]
  42. R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurements of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994). [CrossRef]
  43. S. S. Gambhir, H. R. Herschman, S. R. Cherry, J. R. Barrio, N. Satayamurthy, T. Toyokuni, M. E. Phelps, S. M. Larson, J. Balatoni, R. Finn, M. Sadelain, J. Tjuvajev, R. Blasberg, “Image trangene expression with radionuclide image technologies,Neoplasa 2, 118–138 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited