OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2960–2967

Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 2960-2967 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The simultaneous measurement of three oxygen-sensitive parameters [arterial hemoglobin oxygen saturation (SaO2), tumor vascular-oxygenated hemoglobin concentration ([HbO2]), and tumor oxygen tension (pO2)] in response to hyperoxic respiratory challenge is demonstrated in rat breast tumors. The effects of two hyperoxic gases [oxygen and carbogen (5% CO2 and 95% O2)] were compared, by use of two groups of Fisher rats with subcutaneous 13762NF breast tumors implanted in pedicles on the foreback. Two different gas-inhalation sequences were compared, i.e., air-carbogen-air-oxygen-air and air-oxygen-air-carbogen-air. The results demonstrate that both of the inhaled, hyperoxic gases significantly improved the tumor oxygen status. All three parameters displayed similar dynamic response to hyperoxic gas interventions, but with different response times: the fastest for arterial SaO2, followed by biphasic changes in tumor vascular [HbO2], and then delayed responses for pO2. Both of the gases induced similar changes in vascular oxygenation and regional tissue pO2 in the rat tumors, and changes in [HbO2] and mean pO2 showed a linear correlation with large standard deviations, which presumably results from global versus local measurements. Indeed, the pO2 data revealed heterogeneous regional response to hyperoxic interventions. Although preliminary near-infrared measurements had been demonstrated previously in this model, the addition of the pO2 optical fiber probes provides a link between the noninvasive relative measurements of vascular phenomena based on endogenous reporter molecules, with the quantitative, albeit, invasive pO2 determinations.

© 2003 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.2090) Optical devices : Electro-optical devices

Original Manuscript: September 8, 2002
Revised Manuscript: January 15, 2003
Published: June 1, 2003

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu, "Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters," Appl. Opt. 42, 2960-2967 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Bush, R. D. T. Jenkin, W. E. C. Allt, F. A. Beale, A. J. Dembo, J. F. Pringle, “Definitive evidence for hypoxic cells influencing cure in cancer therapy,” Br. J Cancer 37(suppl 3), 302–306 (1978).
  2. E. J. Hall, Radiobiology for the Radiologist, 4th ed. (Lippincott, Philadelphia, Pa., 1994).
  3. M. Nordsmark, J. Overgaard, “A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy,” Radiother. Oncol. 57, 39–43 (2000). [CrossRef] [PubMed]
  4. O. Thews, D. K. Kelleher, P. Vaupel, “Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors,” Cancer Res. 61, 1358–1361 (2001). [PubMed]
  5. J. H. A. M. Kaanders, L. A. M. Pop, H. A. M. Marres, R. W. M. van der Maazen, A. J. van der Kogel, W. A. J. van Daal, “Radiotherapy with carbogen breathing and nicotinamide in head and neck cancer: feasibility and toxicity,” Radiother. Oncol. 37, 190–198 (1995). [CrossRef] [PubMed]
  6. M. I. Saunders, P. J. Hoskin, K. Pigott, “Accelerated radiotherapy, carbogen and nicotinamide (ARCON) in locally advanced head and neck cancer: a feasibility study,” Radiother. Oncol. 45, 159–166 (1997). [CrossRef]
  7. J. A. Kruuv, W. R. Inch, J. A. McCredie, “Blood flow and oxygenation of tumors in mice. I. Effects of breathing gases containing carbon dioxide at atmospheric pressure,” Cancer. 20, 51–59 (1967). [CrossRef] [PubMed]
  8. J. Overgaard, M. R. Horsman, “Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers,” Semin. Radiat. Oncol. 6, 10–21 (1996). [CrossRef] [PubMed]
  9. P. Vaupel, D. K. Kelleher, O. Thews, “Modulation of tumor oxygenation,” Int. J. Radiat. Oncol. Bio. Phys. 42, 843–848 (1998). [CrossRef]
  10. S. Dische, “What we learnt from hyperbaric oxygen?” Radiother. Oncol. 20(Suppl.), 71–74 (1991). [CrossRef]
  11. S. Dische, M. I. Saunders, R. Sealy, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomized controlled trial,” Radiother. Oncol. 53, 93–98 (1999). [CrossRef]
  12. V. M. Laurence, R. Ward, I. F. Dennis, N. M. Bleehen, “Carbogen breathing with nicotinamide improves the oxygen status of tumors in patients,” Br. J Cancer 72, 198–205 (1995). [CrossRef] [PubMed]
  13. L. Martin, E. Lartigau, P. Weeger, “Changes in the oxygenation of head and neck tumors during carbogen breathing,” Radiother. Oncol. 27, 123–130 (1993). [CrossRef] [PubMed]
  14. H. B. Stone, J. M. Brown, T. Phillips, R. M. Sutherland, “Oxygen in human tumors: correlations between methods of measurement and response to therapy,” Radiat. Res. 136, 422–434 (1993). [CrossRef] [PubMed]
  15. E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen induced changes in rat mammary tumor oxygenation reported by near infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999). [CrossRef] [PubMed]
  16. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000). [CrossRef]
  17. R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994). [CrossRef]
  18. M. Höckel, P. Vaupel, “Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001). [CrossRef] [PubMed]
  19. L. Gray, A. Conger, M. Ebert, S. Hornsey, O. Scott, “The concentration of oxygen dissolved in tissues at time of irradiation as a factor in radio-therapy,” Br. J. Radiol. 26, 638–648 (1953). [CrossRef] [PubMed]
  20. A. W. Fyles, M. Milosevic, R. Wong, M. C. Kavanagh, M. Pintile, A. Sun, W. Chapman, W. Levin, L. Manchul, T. J. Keane, R. P. Hill, “Oxygenation predicts radiation response and survival in patients with cervix cancer,” Radiother. Oncol. 48, 149–156 (1998). [CrossRef] [PubMed]
  21. D. Zhao, A. Constantinescu, E. W. Hahn, R. P. Mason, “Measurement of tumor oxygen dynamics predicts beneficial adjuvant intervention for radiotherapy in Dunning prostate R3327-HI tumors,” Radiat. Res. (to be published) (2003). [CrossRef]
  22. C. Song, I. Lee, T. Hasegawa, J. Rhee, S. Levitt, “Increase in pO2 and radiosensitivity of tumors by Fluosol and carbogen,” Cancer Res. 47, 442–446 (1987). [PubMed]
  23. D. Cater, I. Silver, “Quantitative measurements of oxygen tension in normal tissues and in the tumors of patients before and after radiotherapy,” Acta Radiol. 53, 233–256 (1960). [CrossRef] [PubMed]
  24. D. Zhao, A. Constantinescu, E. W. Hahn, R. P. Mason, “Differential oxygen dynamics in two diverse Dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge,” Int. J. Radiat. Oncol. Biol. Phys. 53, 744–756 (2002). [CrossRef] [PubMed]
  25. J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of tumor vascular oxygenation and pO2 in tumors using NIRS, 19F MR pO2 mapping, and pO2 needle electrode,” J. Biomed. Optics 8, 53–62 (2003). [CrossRef]
  26. D. Zhao, A. Constantinescu, E. W. Hahn, R. P. Mason, “Tumor oxygen dynamics with respect to growth and respiratory challenge: investigation of the Dunning prostate R3327-HI tumor,” Radiat. Res. 156, 510–520 (2001). [CrossRef] [PubMed]
  27. J. Bussink, J. H. A. M. Kaanders, A. M. Strik, B. Vojnovic, A. J. van der Kogel, “Optical sensor-based oxygen tension measurements correspond with hypoxia marker binding in three human tumor xenograft lines,” Radiat. Res. 154, 547–555 (2000). [CrossRef] [PubMed]
  28. J. R. Griffiths, “The OxyLite: a fibre-optic oxygen sensor,” Br. J. Radiol. 72, 627–630 (1999).
  29. Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002). [CrossRef]
  30. Ocean Optics Inc., Dunedin, Fla., March2003. http://www.oceanoptics.com/products/foxysystem.asp
  31. C. B. Allen, B. K. Schneider, C. J. White, “Limitations to oxygen diffusion in in vitro cell exposure systems in hyperoxia and hypoxia,” Am. J. Physiol. Lung Cell Molec. Physiol. 281, L1021–L1027 (2001).
  32. E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, P. P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: a new tumor model for NMR studies,” Magn. Reson. Imaging 11, 1007–1017 (1993). [CrossRef] [PubMed]
  33. Y. Song, A. Constantinescu, R. P. Mason, “Dynamic breast tumor oximetry: the development of prognostic radiology,” Technol. Cancer Res. Treat. 1, 1–8 (2002).
  34. S. Hunjan, D. Zhao, A. Constantinescu, E. W. Hahn, P. P. Antich, R. P. Mason, “Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using Fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor,” Int. J. Radiat. Oncol. Biol. Phys. 49, 1097–1108 (2001). [CrossRef] [PubMed]
  35. D. Zhao, A. Constantinescu, L. Jiang, E. W. Hahn, R. P. Mason, “Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI,” Am. J. Clin. Oncol. 24, 462–466 (2001). [CrossRef] [PubMed]
  36. J. H. Kaanders, J. Bussink, van der A. J. Kogel, “ARCON: a novel biology-based approach in radiotherapy,” Lancet Oncol. 3, 728–737 (2002). [CrossRef] [PubMed]
  37. F. A. Howe, S. P. Robinson, L. M. Rodrigues, J. R. Griffiths, “Flow and oxygenation dependent (FLOOD) contrast MR imaging to monitor the response of rat tumors to carbogen breathing,” Magn. Reson. Imaging. 17, 1307–1318 (1999). [CrossRef] [PubMed]
  38. T. J. Dunn, R. D. Braun, W. E. Rhemus, G. L. Rosner, T. W. Secomb, G. M. Tozer, D. J. Chaplin, M. W. Dewhirst, “The effects of hyperoxic and hypercarbic gases on tumour blood flow,” Br. J. Cancer 80, 117–126 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited