OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2960–2967

Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 2960-2967 (2003)
http://dx.doi.org/10.1364/AO.42.002960


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The simultaneous measurement of three oxygen-sensitive parameters [arterial hemoglobin oxygen saturation (SaO2), tumor vascular-oxygenated hemoglobin concentration ([HbO2]), and tumor oxygen tension (pO2)] in response to hyperoxic respiratory challenge is demonstrated in rat breast tumors. The effects of two hyperoxic gases [oxygen and carbogen (5% CO2 and 95% O2)] were compared, by use of two groups of Fisher rats with subcutaneous 13762NF breast tumors implanted in pedicles on the foreback. Two different gas-inhalation sequences were compared, i.e., air-carbogen-air-oxygen-air and air-oxygen-air-carbogen-air. The results demonstrate that both of the inhaled, hyperoxic gases significantly improved the tumor oxygen status. All three parameters displayed similar dynamic response to hyperoxic gas interventions, but with different response times: the fastest for arterial SaO2, followed by biphasic changes in tumor vascular [HbO2], and then delayed responses for pO2. Both of the gases induced similar changes in vascular oxygenation and regional tissue pO2 in the rat tumors, and changes in [HbO2] and mean pO2 showed a linear correlation with large standard deviations, which presumably results from global versus local measurements. Indeed, the pO2 data revealed heterogeneous regional response to hyperoxic interventions. Although preliminary near-infrared measurements had been demonstrated previously in this model, the addition of the pO2 optical fiber probes provides a link between the noninvasive relative measurements of vascular phenomena based on endogenous reporter molecules, with the quantitative, albeit, invasive pO2 determinations.

© 2003 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.2090) Optical devices : Electro-optical devices

History
Original Manuscript: September 8, 2002
Revised Manuscript: January 15, 2003
Published: June 1, 2003

Citation
Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu, "Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters," Appl. Opt. 42, 2960-2967 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-2960

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited