OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2995–3004

Studying Biological Tissue with Fluorescence Lifetime Imaging: Microscopy, Endoscopy, and Complex Decay Profiles

Jan Siegel, Daniel S. Elson, Stephen E. D. Webb, K. C. Benny Lee, Alexis Vlandas, Giovanni L. Gambaruto, Sandrine Lévêque-Fort, M. John Lever, Paul J. Tadrous, Gordon W. H. Stamp, Andrew L. Wallace, Ann Sandison, Tim F. Watson, Fernando Alvarez, and Paul M. W. French  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 2995-3004 (2003)

View Full Text Article

Acrobat PDF (1634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have applied fluorescence lifetime imaging (FLIM) to the autofluorescence of different kinds of biological tissue in vitro, including animal tissue sections and knee joints as well as human teeth, obtaining two-dimensional maps with functional contrast. We find that fluorescence decay profiles of biological tissue are well described by the stretched exponential function (StrEF), which can represent the complex nature of tissue. The StrEF yields a continuous distribution of fluorescence lifetimes, which can be extracted with an inverse Laplace transformation, and additional information is provided by the width of the distribution. Our experimental results from FLIM microscopy in combination with the StrEF analysis indicate that this technique is ready for clinical deployment, including portability that is through the use of a compact picosecond diode laser as the excitation source. The results obtained with our FLIM endoscope successfully demonstrated the viability of this modality, though they need further optimization. We expect a custom-designed endoscope with optimized illumination and detection efficiencies to provide significantly improved performance.

© 2003 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

Jan Siegel, Daniel S. Elson, Stephen E. D. Webb, K. C. Benny Lee, Alexis Vlandas, Giovanni L. Gambaruto, Sandrine Lévêque-Fort, M. John Lever, Paul J. Tadrous, Gordon W. H. Stamp, Andrew L. Wallace, Ann Sandison, Tim F. Watson, Fernando Alvarez, and Paul M. W. French, "Studying Biological Tissue with Fluorescence Lifetime Imaging: Microscopy, Endoscopy, and Complex Decay Profiles," Appl. Opt. 42, 2995-3004 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
  2. N. Lange, P. Jichlinski, M. Zellweger, M. Forrer, A. Marti, L. Guillou, P. Kucera, G. Wagnieres, and H. van den Bergh, “Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study,” Br. J. Cancer 80, 185–193 (1999).
  3. R. Ackroyd, C. Kelty, N. Brown, and M. Reed, “The history of photodetection and photodynamic therapy,” Photochem. Photobiol. 74, 656–669 (2001).
  4. R. Y. Tsien and M. Poenie, “Fluorescence ratio imaging: a new window into intracellular ionic signalling,” Trends Biochem. Sci. 11, 450–455 (1986).
  5. M. Sinaasappel and H. J. C. M. Sterenborg, “Quantification of the hematoporphyrin derivative by fluorescence measurement using dual-wavelength excitation and dual-wavelength detection,” Appl. Opt. 32, 541–548 (1993).
  6. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “Fluorescence lifetime imaging with picosecond resolution for biomedical applications,” Opt. Lett. 23, 810–812 (1998).
  7. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
  8. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, and E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
  9. W. Becker, A. Bergmann, and G. Weiss, “Lifetime imaging with the Zeiss LSM-510,” in Multiphoton Microscopy in the Biomedical Sciences II, A. Periasamy, W. M. Keck, and P. T. C. So, eds., Proc. SPIE 4620, 30–35 (2002).
  10. See, for instance, P. C. Schneider and R. M. Clegg, “Rapid acquisition analysis and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68, 4107–4119 (1997).
  11. See, for instance, G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubbeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi-Bernardi, and G. De Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer, New York, 1999).
  13. K. C. Benny Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
  14. H. Ina, H. Shibuya, I. Ohashi, and M. Kitagawa, “The frequency of a concomitant early esophageal cancer in male patients with oral and oropharyngeal cancer. Screening results using Lugol dye endoscopy,” Cancer 73, 2038–2041 (1994).
  15. J. Y. Qu, J. W. Hua, and Z. J. Huang, “Correction of geometrical effects on fluorescence imaging of tissue,” Opt. Commun. 176, 319–326 (2000).
  16. J. Y. Qu, “Real time calibrated fluorescence imaging of tissue in vivo by using the combination of fluorescence and cross-polarized reflection,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 485–487.
  17. H. Zeng, A. Weiss, R. Cline, and C. E. MacAuley, “Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract,” Bioimaging 6, 151–165 (1998).
  18. T. McKechnie, A. Jahan, I. Tait, A. Cuschieri, W. Sibbett, and M. Padgett, “An endoscopic system for the early detection of cancers of the gastrointestinal tract,” Rev. Sci. Instrum. 69, 2521–2523 (1998).
  19. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38, 7133–7144 (1999).
  20. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152–1154 (1998).
  21. J. Mizeret, G. Wagnieres, T. Stepinac, and H. Van Den Bergh, “Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM),” Las. Med. Sci. 12, 209–217 (1997).
  22. D. R. James and W. R. Ware, “A fallacy in the interpretation of fluorescence decay parameters,” Chem. Phys. Lett. 120, 455–459 (1985).
  23. J. R. Alcala, E. Gratton, and F. G. Prendergast, “Fluorescence lifetime distributions in proteins,” Biophys. J. 51, 597–604 (1987).
  24. J. R. Alcala, “The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions,” J. Chem. Phys. 101, 4578–4584 (1994).
  25. F. Alvarez, A. Alegría, and J. Colmenero, “Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions,” Phys. Rev. B 44, 7306–7312 (1991).
  26. D. S. Elson, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Lever, P. M. W. French, K. Lauritsen, M. Wahl, and R. Erdmann, “Fluorescence lifetime system for microscopy and multiwell plate imaging with a blue picosecond diode laser,” Opt. Lett. 27, 1409–1411 (2002).
  27. Spatial image quality is a measure of lifetime variability between connected pixels within regions of the same average lifetime; image contrast measures lifetime variation between averaged regions.
  28. S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
  29. K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46(2), 199–209 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited