OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3027–3037

Precision of measurement of tissue optical properties with optical coherence tomography

Alexander I. Kholodnykh, Irina Y. Petrova, Kirill V. Larin, Massoud Motamedi, and Rinat O. Esenaliev  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3027-3037 (2003)
http://dx.doi.org/10.1364/AO.42.003027


View Full Text Article

Enhanced HTML    Acrobat PDF (556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate and noninvasive measurement of tissue optical properties can be used for biomedical diagnostics and monitoring of tissue analytes. Noninvasive measurement of tissue optical properties (total attenuation and scattering coefficients, optical thickness, etc.) can be performed with the optical coherence tomography (OCT) technique. However, speckle noise substantially deteriorates the accuracy of the measurements with this technique. We studied suppression of speckle noise for accurate measurement of backscattering signal and scattering coefficient with the OCT technique. Our results demonstrate that the precision of measurement of backscattering signals with the OCT technique can be 0.2% for homogeneously scattering media and 0.7% for skin, if spatial averaging of speckle noise is applied. This averaging allows us to achieve the precision of tissue scattering coefficient measurements of approximately ±0.8%. This precision can be further improved by a factor of 2–3, upon optimization of OCT operating parameters.

© 2003 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

History
Original Manuscript: September 17, 2002
Revised Manuscript: January 21, 2003
Published: June 1, 2003

Citation
Alexander I. Kholodnykh, Irina Y. Petrova, Kirill V. Larin, Massoud Motamedi, and Rinat O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993). [PubMed]
  3. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994). [CrossRef]
  4. J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence tomography,” Dermatology 191, 93–98 (1995). [CrossRef]
  5. J. Welzel, E. Lankenau, R. Birngruber, R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Derm. 37, 958–963 (1997). [CrossRef]
  6. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998). [CrossRef] [PubMed]
  7. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  8. K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998). [CrossRef] [PubMed]
  9. M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997). [PubMed]
  10. J. M. Schmitt, A. Knuttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  11. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001). [CrossRef]
  12. M. Kohl, M. Cope, M. Essenpreis, D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994). [CrossRef] [PubMed]
  13. J. M. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissue in the near infrared,” Opt. Lett. 19, 2062–2064 (1994). [CrossRef] [PubMed]
  14. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997). [CrossRef] [PubMed]
  15. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  16. J. M. Schmitt, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef] [PubMed]
  17. J. M. Schmitt, A. Knuttel, A. Gandjbakhche, R. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993). [CrossRef]
  18. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997). [CrossRef] [PubMed]
  19. J. Rogowska, M. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19, 1261–1266 (2000). [CrossRef]
  20. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  21. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, R. O. Esenaliev, “Optimization of low coherence interferometry for quantitative analysis of tissue optical properties,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, A. V. Priezzhev, G. L. Coté, eds., Proc. SPIE4624, 36–46 (2002). [CrossRef]
  22. S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, D. H. Reitze, “In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography,” J. Neurosci. Methods 80, 91–98 (1998). [CrossRef] [PubMed]
  23. M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995). [CrossRef] [PubMed]
  24. H. H. Arsenault, G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Am. 66, 1160–1163 (1976). [CrossRef]
  25. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  26. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (WCB McGraw-Hill, USA, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited