OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3081–3094

Fluorescence optical diffusion tomography

Adam B. Milstein, Seungseok Oh, Kevin J. Webb, Charles A. Bouman, Quan Zhang, David A. Boas, and R. P. Millane  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3081-3094 (2003)
http://dx.doi.org/10.1364/AO.42.003081


View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue. The method utilizes measurements at both the excitation and the emission wavelengths to reconstruct all unknown parameters. The effectiveness of the reconstruction algorithm is demonstrated by simulation and by application to experimental data from a tissue phantom containing the fluorescent agent Indocyanine Green.

© 2003 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(290.3200) Scattering : Inverse scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: August 31, 2002
Revised Manuscript: December 19, 2002
Published: June 1, 2003

Citation
Adam B. Milstein, Seungseok Oh, Kevin J. Webb, Charles A. Bouman, Quan Zhang, David A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  3. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  4. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996). [CrossRef] [PubMed]
  5. A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, H. van den Bergh, “Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice,” Cancer 67, 2529–2537 (1991). [CrossRef] [PubMed]
  6. B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–658 (1997). [CrossRef] [PubMed]
  7. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66, 229–236 (1997). [CrossRef] [PubMed]
  8. J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998). [CrossRef]
  9. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999). [CrossRef] [PubMed]
  10. U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999). [PubMed]
  11. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000). [CrossRef] [PubMed]
  12. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000). [CrossRef] [PubMed]
  13. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001). [CrossRef] [PubMed]
  14. J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001). [CrossRef] [PubMed]
  15. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  16. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  17. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001). [CrossRef]
  18. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef] [PubMed]
  19. D. Paithankar, A. Chen, B. Pogue, M. Patterson, E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef] [PubMed]
  20. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998). [CrossRef]
  21. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997). [CrossRef]
  22. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001). [CrossRef]
  23. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997); http://www.opticsexpress.org . [CrossRef] [PubMed]
  24. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  25. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001). [CrossRef]
  26. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002). [CrossRef]
  27. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999). [CrossRef]
  28. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997). [CrossRef] [PubMed]
  29. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002). [CrossRef]
  30. C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993). [CrossRef] [PubMed]
  31. K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993). [CrossRef]
  32. J. C. Adams, “MUDPACK: multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989). [CrossRef]
  33. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  34. S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998). [CrossRef]
  35. S. Oh, A. B. Milstein, C. A. Bouman, K. J. Webb, “Multigrid inversion algorithms with applications to optical diffusion tomography,” in Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 901–905.
  36. K. Sauer, C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Trans. Nucl. Sci. 39, 1144–1152 (1992). [CrossRef]
  37. Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 219–238 (2001). [CrossRef]
  38. R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999). [CrossRef]
  39. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  40. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  41. R. C. Benson, H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23, 159–163 (1978). [CrossRef] [PubMed]
  42. D. Boas, T. Gaudette, S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.org . [CrossRef]
  43. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976). [PubMed]
  44. A. D. Klose, A. H. Hielscher, “A transport-theory-based reconstruction algorithm for optical tomography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 26–35 (1999). [CrossRef]
  45. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  46. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited