Robust Inference of Baseline Optical Properties of the Human Head with Three-Dimensional Segmentation from Magnetic Resonance Imaging
Applied Optics, Vol. 42, Issue 16, pp. 3095-3108 (2003)
http://dx.doi.org/10.1364/AO.42.003095
Acrobat PDF (266 KB)
Abstract
We model the capability of a small (6-optode) time-resolved diffuse optical tomography (DOT) system to infer baseline absorption and reduced scattering coefficients of the tissues of the human head (scalp, skull, and brain). Our heterogeneous three-dimensional diffusion forward model uses tissue geometry from segmented magnetic resonance (MR) data. Handling the inverse problem by use of Bayesian inference and introducing a realistic noise model, we predict coefficient error bars in terms of detected photon number and assumed model error. We demonstrate the large improvement that a MR-segmented model can provide: 2–10% error in brain coefficients (for 2 × 10<sup>6</sup> photons, 5% model error). We sample from the exact posterior and show robustness to numerical model error. This opens up the possibility of simultaneous DOT and MR for quantitative cortically constrained functional neuroimaging.
© 2003 Optical Society of America
OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media
Citation
Alex H. Barnett, Joseph P. Culver, A. Gregory Sorensen, Anders Dale, and David A. Boas, "Robust Inference of Baseline Optical Properties of the Human Head with Three-Dimensional Segmentation from Magnetic Resonance Imaging," Appl. Opt. 42, 3095-3108 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3095
Sort: Year | Journal | Reset
References
- D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
- B. Chance, D. T. Delpy, C. E. Cooper, and E. O. R. Reynolds, eds., "Near-infrared spectroscopy and imaging of living systems, " Philos. Trans. R. Soc. London Ser. B 352, 649–763 (1997)
- D. A. Boas, M. A. Franceschini, A. K. Dunn, and G. Strangman, “Noninvasive imaging of cerebral activation with diffuse optical tomography,” in In Vivo Optical Imaging of Brain Function, R. D. Frostig, ed. (CRC Press, Boca Raton, Fla., 2002), pp. 193–221.
- A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
- S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
- B. W. Pogue, T. O. McBride, S. Osterman, S. Poplack, U. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218(1), 261–266 (2001).
- J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
- N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
- S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
- A. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis,” in Photon Propagation in Tissue IV, D. A. Benaron, B. Chance, M. Ferrari, and M. Kohl, eds., Proc. SPIE 3566, 151–160 (1998).
- G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI,” NeuroImage 6, 168–180 (1997).
- J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291, 105–108 (2000).
- V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
- G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” NeuroImage 17, 719–731 (2002).
- S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
- D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
- S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
- W. D. Heiss, “Ischemic penumbra: evidence from functional imaging in man,” J. Cereb. Blood Flow Metab. 20, 1276–1793 (2000).
- S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
- S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
- R. Barbour, H. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11 of the SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 87–120.
- A. J. Devaney, “Reconstruction tomography with diffractive wave-fields,” Inverse Probl. 2, 161–183 (1986).
- S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–854 (1997).
- X. Cheng and D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Exp. 4, 299–307 (1999); http://www.opticsexpress.org.
- V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
- S. R. Arridge and M. Schweiger, “Reconstruction in optical tomography using MRI based prior knowledge,” in Information Processing in Medical Imaging, Y. Bizais, C. Barillot, and R. di Paola, eds. (Kluwer, Dordrecht, The Netherlands, 1995), pp. 77–88.
- M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2722 (1999).
- M. Hämäläinen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
- J. D. Oakley, “Magnetic resonance imaging based correction and reconstruction of positron emission tomography images,” Ph.D. dissertation (Service Hospitalier Frederic Joliot, CEA, Orsay, France, 2000).
- V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Exp. 7, 468–481 (2000); http://www.opticsexpress.org.
- M. Kilmer, E. Miller, D. A. Boas, and D. Brooks, “A shape-based reconstruction technique for DPDW data,” Opt. Exp. 7, 481–491 (2000); http://www.opticsexpress.com.
- M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
- R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ_{s}′ and μ_{a} images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
- A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
- A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered media,” Appl. Opt. 37, 779–791 (1998).
- A. Kienle, T. Glanzmann, G. Wagnières, and H. van den Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37, 6852–6862 (1998).
- A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
- C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).
- A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
- K. M. Hanson, G. S. Cunningham, and S. S. Saquib, “Inversion based on computational simulations,” in Maximum Entropy and Bayesian Methods, G. J. Erickson, J. T. Rychert, and C. R. Smith, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1998), pp. 121–135.
- S. S. Saquib, K. M. Hanson, and G. S. Cunningham, “Model-based image reconstruction from time-resolved diffusion data,” in Medical Imaging 1997: Image Processing, K. M. Hanson, ed., Proc. SPIE 3034, 369–380 (1997).
- G. Nicholls and C. Fox, “Prior modelling and posterior sampling in impedance imaging,” in Bayesian Inference for Inverse Problems, A. Mohammad-Djafari, ed., Proc. SPIE 3459, 116–127 (1998).
- J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, “Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography,” Inverse Probl. 16, 1487–1522 (2000).
- D. M. Schmidt, J. S. George, and C. C. Wood, “Bayesian inference applied to the electromagnetic inverse problem,” Hum. Brain Mapp. 7, 195–212 (1999).
- S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source–detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
- I. Kwee, “Towards a Bayesian framework for optical tomography,” Ph.D. dissertation (Department of Medical Physics and Bioengineering, University College London, London, 1999).
- M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
- K. J. Friston, “Bayesian estimation of dynamical systems: an application to fMRI,” NeuroImage 16, 513–530 (2002).
- D. A. Boas, T. J. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001); http://www.opticsexpress.com.
- D. J. C. MacKay, “Information theory, inference, and learning algorithms,” Chap. 3, available at http://www.inference.phy.cam.ac.uk/mackay/book.html.
- J. Berger, Statistical Decision Theory and Bayesian Analysis (Springer, New York, 1985).
- S. J. Press, Bayesian Statistics: Principles, Models, and Applications, Wiley Series in Probability and Statistics (Wiley, New York, 1989).
- D. S. Sivia, Data Analysis: A Bayesian Tutorial (Oxford U. Press, Oxford, U.K., 1996).
- S. F. Gull, “Bayesian inductive inference and maximum entropy,” in Foundations, Vol. 1 of Maximum Entropy and Bayesian Methods in Science and Engineering, G. R. Erickson and C. R. Smith, eds. (Kluwer, Dordrecht, The Netherlands, 1988).
- R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,” Tech. Rep. CRG-TR-93–1 (Department of Computer Science, University of Toronto, Toronto, 1993); available at http://www.cs.toronto.edu/~radford/review.abstract.html.
- S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Exp. 2, 213–226 (1998); http://www.opticsexpress.org.
- A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
- F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
- A. M. Dale, B. Fischl, and M. I. Sereno, “Cortical surface-based analysis. I. Segmentation and surface reconstruction,” NeuroImage 9, 179–194 (1999).
- E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
- F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
- J. C. Tamraz and Y. G. Comair, Atlas of Regional Anatomy of the Brain Using MRI: With Functional Correlations (Springer, New York, 2000).
- J. Ripoll, S. R. Arridge, and M. Nieto-Vesperinas, “Effect of roughness in nondiffusive regions within diffusive media,” J. Opt. Soc. Am. A 18, 940–947 (2001).
- F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
- K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990).
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
- A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
- T. B. Durduran, B. Chance, A. G. Yodh, and D. A. Boas, “Does the photon diffusion coefficient depend on absorption?,” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
- Note that for us this acronym does not imply association with hyperbolic equations. We are evolving a parabolic equation.
- H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
- S. R. Arridge, M. Hiraoka, and M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992); available at http://lib-www.lanl.gov/numerical/bookcpdf.html.
- S. J. Press, Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Interference, 2nd ed. (Krieger, Malabar, Fla., 1982).
- R. D. Richtmeyer and K. W. Morton, Difference Methods for Initial-Value Problems (Wiley, New York, 1967).
- J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer-Verlag, New York, 1995).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.