OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3109–3116

Optical tomography of a realistic neonatal head phantom

Adam Gibson, Roza Md. Yusof, Hamid Dehghani, Jason Riley, Nick Everdell, Robin Richards, Jeremy C. Hebden, Martin Schweiger, Simon R. Arridge, and David T. Delpy  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3109-3116 (2003)
http://dx.doi.org/10.1364/AO.42.003109


View Full Text Article

Enhanced HTML    Acrobat PDF (2014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have begun clinical trials of optical tomography of the neonatal brain. To validate this research, we have built and imaged an anatomically realistic, tissue-equivalent neonatal head phantom that is hollow, allowing contrasting objects to be placed inside it. Images were reconstructed by use of two finite-element meshes, one generated from a computed tomography image of the phantom and the other spherical. The phantom was filled with a liquid of the same optical properties as the outer region, and two perturbations were placed inside. These were successfully imaged with good separation between the absorption and scatter coefficients. The phantom was then refilled with a liquid of increased absorption compared with the background to simulate the brain, and the absolute properties of the two regions were found. These were used as a priori information for the complete reconstruction. Both perturbations were visible, superimposed on the increased absorption of the central region. The head-shaped mesh performed slightly better than the spherical mesh, particularly when the absorption of the central region of the phantom was increased.

© 2003 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

History
Original Manuscript: July 22, 2002
Revised Manuscript: October 24, 2002
Published: June 1, 2003

Citation
Adam Gibson, Roza Md. Yusof, Hamid Dehghani, Jason Riley, Nick Everdell, Robin Richards, Jeremy C. Hebden, Martin Schweiger, Simon R. Arridge, and David T. Delpy, "Optical tomography of a realistic neonatal head phantom," Appl. Opt. 42, 3109-3116 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  2. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000). [CrossRef] [PubMed]
  3. S. R. Hintz, D. A. Benaron, A. M. Siegal, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001). [CrossRef] [PubMed]
  4. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001). [CrossRef] [PubMed]
  5. G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography,” Neurosci. Lett. 282, 101–104 (2000). [CrossRef] [PubMed]
  6. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000). [CrossRef]
  8. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Sys. Technol. 11, 2–11 (2000). [CrossRef]
  9. J. C. Hebden, E. M. C. Hillman, A. Gibson, N. Everdell, R. Yusof, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, “Time resolved optical imaging of the newborn infant brain: initial clinical results,” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 587–589.
  10. H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  11. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000). [CrossRef]
  12. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, H. D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000). [CrossRef]
  13. J. C. Hebden, H. Veestra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001). [CrossRef]
  14. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  15. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue, in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]
  16. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near infrared optical properties of ex-vivo human skin and sub-cutaneous tissues measured using the Monte-Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998). [CrossRef] [PubMed]
  17. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Md. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003). [CrossRef] [PubMed]
  18. J. Schöberl, “NETGEN—an advancing front 2D/3D mesh generator based on abstract rules,” Comput. Visual Sci. 1, 41–52 (1997). [CrossRef]
  19. M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999). [CrossRef] [PubMed]
  20. V. Ntziachristos, A. G. Yodh, M. D. Schnall, B. Chance, “Optimization of diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002). [CrossRef] [PubMed]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite-element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  22. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000). [CrossRef]
  23. H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt. Soc. Am. A 19, 1162–1171 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited