OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3187–3197

Collection efficiency of a single optical fiber in turbid media

Paulo R. Bargo, Scott A. Prahl, and Steven L. Jacques  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3187-3197 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.

© 2003 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

Original Manuscript: September 1, 2002
Revised Manuscript: December 2, 2002
Published: June 1, 2003

Paulo R. Bargo, Scott A. Prahl, and Steven L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  2. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 83–94. [CrossRef]
  3. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  4. D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996). [CrossRef]
  5. M. Canpolat, J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40, 3792–3799 (2001). [CrossRef]
  6. D. R. Braichotte, G. A. Wagnieres, R. Bays, P. Monnier, H. E. van den Bergh, “Clinical pharmacokinetic studies of photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995). [CrossRef] [PubMed]
  7. M. Sinaasapel, H. J. C. M. Sternborg, “Quantification of the hematoporphyrin derivative by fluorescence measurement using dual-wavelength excitation and dual-wavelength detection,” Appl. Opt. 32, 541–548 (1993). [CrossRef]
  8. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  9. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  10. W. B. Pogue, T. Hasan, “Fluorophore quantitation in tissue-simulating media with confocal detection,” IEEE J. Quantum Electron. 2, 959–964 (1997).
  11. L. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. dissertation (Rice University, Houston, Tex., 1992).
  12. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992). [CrossRef]
  13. E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), pp. 111–121.
  14. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  15. S. A. Prahl, S. L. Jacques, “Monte Carlo simulations,” http://omlc.ogi.edu/software/mc/ .
  16. S. A. Prahl, “Light transport in tissue,” Ph.D. dissertation (University of Texas, Austin, Tex., 1988).
  17. M. Young, Optics and Lasers: Including Fibers and Optical Waveguides, 4th rev. ed. (Springer-Verlag, New York, 1992), p. 251.
  18. W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  19. Optical fiber catalog, CeramOptec Industries, Inc., http://www.ceramoptec.com/ .
  20. Melles Griot product catalog, page 4.13 (1999).
  21. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Germet, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  22. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  23. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989). [CrossRef] [PubMed]
  24. B. C. Wilson, “Measurement of tissue optical properties: methods and theories,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 233–274. [CrossRef]
  25. S. L. Jacques, “Modeling light transport in tissue,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 21–32. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited