OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3198–3204

Influence of perfusion depth on laser Doppler flow measurements with large source-detector spacing

Yohei Watanabe and Eiji Okada  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3198-3204 (2003)
http://dx.doi.org/10.1364/AO.42.003198


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser Doppler flowmetry with a large source-detector spacing has been applied to measure blood perfusion in the deeper regions of tissue. The influence of the depth of perfusion on the Doppler spectrum for the large source-detector spacing is likely to be different from that for the conventional laser Doppler instruments with small source-detector spacing. In this study, the light propagation in a tissue model with a blood perfusion layer is predicted by the Monte Carlo simulation to discuss the influence of the depth of perfusion, blood volume, and source-detector spacing on the spectrum of the Doppler signal detected with large source-detector spacing. The influence of the depth of perfusion on the Doppler spectrum for the large source-detector spacing is different from that for the conventional laser Doppler instruments with small source-detector spacing, although the influence of source-detector spacing and blood volume on the Doppler spectrum for large source-detector spacing is almost the same as that for the conventional laser Doppler instruments. The influence of the depth of the perfusion on the Doppler spectrum depends on the path length that the detected light travels at different depths.

© 2003 Optical Society of America

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: September 1, 2002
Revised Manuscript: December 18, 2002
Published: June 1, 2003

Citation
Yohei Watanabe and Eiji Okada, "Influence of perfusion depth on laser Doppler flow measurements with large source-detector spacing," Appl. Opt. 42, 3198-3204 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE. Trans. Biomed. Eng. BME-32, 439–447 (1985). [CrossRef]
  2. R. Steinmeier, I. Bondar, C. Bauhuf, R. Fahlbusch, “Laser Doppler flowmetry mapping of cerebrocortical microflow: characteristics and limitations,” NeuroImage 15, 107–119 (2002). [CrossRef] [PubMed]
  3. R. Bonner, R. Nossal, “Model for laser Doppler measurements of perfusion in tissue,” Appl. Opt. 20, 2097–2107 (1981). [CrossRef] [PubMed]
  4. H. W. Jentink, F. F. de Mul, R. Graaff, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Laser Doppler flowmetry: measurements in a layered perfusion model and Monte Carlo simulations of measurements,” Appl. Opt. 30, 2592–2597 (1991). [CrossRef] [PubMed]
  5. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994). [CrossRef] [PubMed]
  6. H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurement using different lasers,” Appl. Opt. 29, 2371–2381 (1990). [CrossRef] [PubMed]
  7. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 63–72 (1991). [CrossRef]
  8. M. Larsson, W. Steenbergen, T. Stromberg, “Influence of optical properties and fiber separation on laser doppler flownetry,” J. Biomed. Opt. 7, 236–243 (2002). [CrossRef] [PubMed]
  9. R. Lohwasser, G. Soelkner, “Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries,” Appl. Opt. 38, 2128–2137 (1999). [CrossRef]
  10. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998). [CrossRef] [PubMed]
  11. S. J. Matcher, C. E. Ewell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several publish tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995). [CrossRef] [PubMed]
  12. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  13. F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995). [CrossRef] [PubMed]
  14. M. K. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992). [CrossRef] [PubMed]
  15. E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited