OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3198–3204

Influence of perfusion depth on laser Doppler flow measurements with large source-detector spacing

Yohei Watanabe and Eiji Okada  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3198-3204 (2003)
http://dx.doi.org/10.1364/AO.42.003198


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser Doppler flowmetry with a large source-detector spacing has been applied to measure blood perfusion in the deeper regions of tissue. The influence of the depth of perfusion on the Doppler spectrum for the large source-detector spacing is likely to be different from that for the conventional laser Doppler instruments with small source-detector spacing. In this study, the light propagation in a tissue model with a blood perfusion layer is predicted by the Monte Carlo simulation to discuss the influence of the depth of perfusion, blood volume, and source-detector spacing on the spectrum of the Doppler signal detected with large source-detector spacing. The influence of the depth of perfusion on the Doppler spectrum for the large source-detector spacing is different from that for the conventional laser Doppler instruments with small source-detector spacing, although the influence of source-detector spacing and blood volume on the Doppler spectrum for large source-detector spacing is almost the same as that for the conventional laser Doppler instruments. The influence of the depth of the perfusion on the Doppler spectrum depends on the path length that the detected light travels at different depths.

© 2003 Optical Society of America

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: September 1, 2002
Revised Manuscript: December 18, 2002
Published: June 1, 2003

Citation
Yohei Watanabe and Eiji Okada, "Influence of perfusion depth on laser Doppler flow measurements with large source-detector spacing," Appl. Opt. 42, 3198-3204 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3198

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited