OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3205–3214

Catheter for Diagnosis and Therapy with Infrared Evanescent Waves

Brett A. Hooper, Anjul Maheshwari, Adam C. Curry, and Todd M. Alter  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3205-3214 (2003)

View Full Text Article

Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed an optical delivery device (catheter) capable of transmitting broadband infrared light (IR wavelengths from 2 to 10 μm) for both diagnostic and therapeutic applications. The catheter is 1.68 mm in outer diameter and 1 m in length. It consists of two hollow glass waveguides coupled to a high-refractive-index optic tip. The IR light interacts with the tissue at the optic-tissue interface to measure the spectral signatures and perform therapy on the tissue at this interface. Fourier-transform IR spectrophotometer light is used to obtain the spectral signatures, and an IR free-electron laser (FEL) is used to study the therapeutic interaction of evanescent waves with the tissue. We present our catheter design; preliminary IR spectroscopy of aorta, blood, fatty tissue, and muscle; and IR FEL therapy on atherosclerotic aorta.

© 2003 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(300.6340) Spectroscopy : Spectroscopy, infrared

Brett A. Hooper, Anjul Maheshwari, Adam C. Curry, and Todd M. Alter, "Catheter for Diagnosis and Therapy with Infrared Evanescent Waves," Appl. Opt. 42, 3205-3214 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. Mirabella, Internal Reflection Spectroscopy, Vol. 15 of Practical Spectroscopy Series (Marcel Dekker, New York, 1992).
  2. B. A. Hooper, Y. Domankevitz, C. Lin, and R. Rox Anderson, “Precise, controlled laser delivery with evanescent optical waves,” Appl. Opt. 38, 5511–5517 (1999).
  3. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
  4. W. J. Parsons, J. C. Rembert, R. P. Bauman, J. C. Greenfield, Jr., and C. A. Piantadosi, “Dynamic mechanisms of cardiac oxygenation during brief ischemia and reperfusion,” Am. J. Physiol. 259, H1477–H1485 (1990).
  5. W. J. Parsons, J. C. Rembert, R. P. Bauman, J. C. Greenfield, Jr., F. G. Duhaylongsod, and C. A. Piantadosi, “Myocardial oxygenation in dogs during partial and complete coronary artery occlusion,” Circ. Res. 73(3), 458–464 (1993).
  6. M. Nilsson, D. Heinrich, J. Olajos, and S. AnderssonEngels, “Near infrared diffuse reflection and laser-induced fluorescence spectroscopy for myocardial tissue characterisation,” Spectrochim. Acta Part A 51, 1901–1912 (1997).
  7. R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical-analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103(2), 181–193 (1993).
  8. J. J. Baraga, M. S. Feld, and R. P. Rava, “Detection of atherosclerosis in human artery by midinfrared attenuated total reflectance,” Appl. Spectrosc. 45, 709–710 (1991).
  9. R. P. Rava, J. J. Baraga, and M. S. Feld, “Near-infrared Fourier-transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
  10. T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 μm at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10, 357–362 (1990).
  11. W. Casscells, B. Hathorn, M. David, T. Krabach, W. K. Vaughn, H. A. McAllister, G. Bearman, and J. T. Willerson, “Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis,” Lancet 347, 1447–1449 (1996).
  12. P. Colarusso, L. Kidder, I. Levin, J. Fraser, J. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: from planetary to cellular systems,” Appl. Spectrosc. 52(3), 106A–119A (1998).
  13. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, J. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
  14. K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23, 233–237 (1998).
  15. D. R. Holmes and J. F. Bresnahan, “Interventional cardiology,” Cardiol. Clin. 9, 115–134 (1991).
  16. R. Linsker, R. Srinivasan, J. J. Wynne, and D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Lasers Surg. Med. 4, 201–206 (1984).
  17. G. C. Hughes, A. P. Kypson, B. Yin, J. D. St. Louis, S. S. Biswas, R. E. Coleman, T. R. DeGrado, B. H. Annex, C. L. Donovan, K. P. Lanolfo, and J. E. Lowe, “Induction of angiogenesis following transmyocardial laser revascularization in a model of hibernating myocardium: a comparison of holmium:YAG, carbon dioxide, and excimer lasers,” Surg. Forum 50, 115–117 (1999).
  18. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
  19. J. P. Cummings and J. T. Walsh, Jr., “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
  20. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, and E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
  21. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, and A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
  22. J. T. Walsh, Jr., T. H. Flotte, R. R. Anderson, and T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
  23. L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high power transmission through chalcogenide fibers: current results and future challenges,” in Lasers-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 2966, 553–563 (1997).
  24. Y. Matsuura, K. Matsuura, and J. A. Harrington, “Power delivery of free-electron laser light by hollow glass waveguides,” Appl. Opt. 35, 5395–5397 (1996).
  25. I. Gannot, A. Inberg, M. Oksman, R. Waynant, and N. Croitoru, “Current status of flexible waveguides for IR laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron. 2, 880–889 (1996).
  26. H. Pratisto, S. Uhlhorn, and E. D. Jansen, “Beam delivery of the Vanderbilt free-electron laser with hollow waveguides: effect of temporal and spatial pulse propagation,” Fiber Integr. Opt. 20, 83–94 (2001).
  27. Photran, Inc., Amherst, N.H., www.photran.com.
  28. Remspec, Inc., Charlton, Mass., www.remspec.com.
  29. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow waveguides,” Appl. Opt. 34, 6842–6847 (1995).
  30. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
  31. B. A. Hooper, G. C. LaVerde, and O. T. von Ramm, “Design and construction of an evanescent optical wave device for the recanalization of vessels,” Nucl. Instrum. Methods Phys. Res. A 475, 645–649 (2001).
  32. P. Klocek, ed. Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
  33. W. G. Driscoll and W. Vaughn, eds., Handbook of Optics (McGraw-Hill, New York, 1978).
  34. F. Kolodgie, A. Katocs, E. Largis, S. Wrenn, J. Cornhill, E. Herderick, S. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol,” Arterioscler. Thromb. Vasc. Biol. 16, 1454–1464 (1996).
  35. E. V. Ross, Y. Domankevitz, and R. R. Anderson, “Effects of heterogeneous absorption of laser radiation in biotissue ablation: characterization of ablation of fat with a pulsed CO2 laser,” Lasers Surg. Med. 20, 1–6 (1996).
  36. D. R. Kodali, D. M. Small, J. Powell, and K. Krishna, “Infrared micro-imaging of atherosclerotic arteries,” Appl. Spectrosc. 45, 1310–1317 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited