OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3215–3224

In vivo port-wine stain depth determination with a photoacoustic probe

John A. Viator, Bernard Choi, Martin Ambrose, Jerome Spanier, and J. Stuart Nelson  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3215-3224 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed a photoacoustic probe for port-wine stain (PWS) depth measurements consisting of optical fibers for laser light delivery and a piezoelectric element for acoustic detection. We characterized the capabilities and limitations of the probe for profiling PWS skin. The probe induced and measured photoacoustic waves in acrylamide tissue phantoms and PWS skin in vivo. The optical properties of the phantoms were chosen to mimic those of PWS skin. We denoised acoustic waves using spline wavelet transforms, then deconvolved with the impulse response of the probe to yield initial subsurface pressure distributions in phantoms and PWS skin. Using the phantoms, we determined that the limit in resolving epidermal and PWS layers was less than 70 μm. In addition, we used the phantoms to determine that the maximum epidermal melanin concentration that allowed detection of PWS was between 13 and 20%. In vivo measurements of PWS skin with different epidermal melanin concentrations correlated with the phantoms. Thus the photoacoustic probe can be used to determine PWS depth for most patients receiving laser therapy.

© 2003 Optical Society of America

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

Original Manuscript: September 13, 2002
Revised Manuscript: January 9, 2003
Published: June 1, 2003

John A. Viator, Bernard Choi, Martin Ambrose, Jerome Spanier, and J. Stuart Nelson, "In vivo port-wine stain depth determination with a photoacoustic probe," Appl. Opt. 42, 3215-3224 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Aguilar, B. Majaron, J. A. Viator, B. Basinger, E. Karapetian, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, “Influence of spraying distance and post-cooling on cryogen spray cooling for dermatologic laser surgery,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XI, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, J. S. Nelson, G. M. Peavy, H.-D. Reidenback, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, T. A. Woodward, eds., Proc. SPIE4244, 82–92 (2001). [CrossRef]
  2. T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Arch. Dermatol. 124, 869–871 (1988). [CrossRef]
  3. J. S. Nelson, T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, S. L. Jacques, “Dynamic epidermal cooling during pulsed laser treatment of port-wine stains. A new methodology with preliminary clinical evaluation.” Arch. Dermatol. 131, 695–700 (1995). [CrossRef] [PubMed]
  4. J. S. Nelson, B. Majaron, K. M. Kelly, “Active skin cooling in conjunction with laser dermatologic surgery,” Semin. Cutan. Med. Surg. 19, 253–266 (2000). [CrossRef]
  5. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  6. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101 (1993). [CrossRef]
  7. J. A. Viator, S. L. Jacques, S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999). [CrossRef]
  8. J. A. Viator, G. Paltauf, S. L. Jacques, S. A. Prahl, “Design and testing of an endoscopic photoacoustic probe for determining treatment depth after photodynamic therapy of esophageal cancer,” in Biomedical Optics II, A. A. Oraevsky, ed., Proc. SPIE4256, 16–27 (2001). [CrossRef]
  9. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002). [CrossRef] [PubMed]
  10. M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, “Laser treatment of port wine stains,” in Optical Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995). [CrossRef]
  11. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  12. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  13. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998). [CrossRef]
  14. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys. A 68, 525–531 (1999). [CrossRef]
  15. J. S. Walker, A Primer on Wavelets and their Scientific Applications (CRC Press, Boca Raton, Fla., 1999). [CrossRef]
  16. N. V. Thakor, D. Sherman, “Wavelet (time-scale) analysis in biomedical signal processing,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).
  17. G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, Mass., 1994).
  18. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, Pa., 1992). [CrossRef]
  19. D. L. Donoho, I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995). [CrossRef]
  20. J. Claerbout, S. Fomel, “Image estimation by example: geophysical soundings image construction: multidimensional autoregression” (2000); http://sepwww.stanford.edu/sep/prof .
  21. C. Taswell, “The what, how, and why of wavelet shrinkage denoising,” Comput. Sci. Eng. 2, 12–19 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited