OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3225–3233

Controlling the spectral response in guided-mode resonance filter design

Samuel T. Thurman and G. Michael Morris  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3225-3233 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Techniques for controlling spectral width are used in conjunction with thin-film techniques in the design of guided-mode resonance (GMR) filters to provide simultaneous control over line-shape symmetry, sideband levels, and spectral width. Several factors that could limit the minimum spectral width are discussed. We used interference effects for passband shaping by stacking multiple GMR filters on top of one another. A design is presented for a 200-GHz telecommunications filter along with a tolerance analysis. Compared with a conventional thin-film filter, the GMR filter has fewer layers and looser thickness tolerances. Grating fabrication tolerances are also discussed.

© 2003 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(240.0310) Optics at surfaces : Thin films
(260.5740) Physical optics : Resonance

Original Manuscript: February 21, 2003
Published: June 1, 2003

Samuel T. Thurman and G. Michael Morris, "Controlling the spectral response in guided-mode resonance filter design," Appl. Opt. 42, 3225-3233 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969).
  2. H. A. Macleod, “Challenges in the design and production of narrow-band filters for optical fiber telecommunications,” in Optical and Infrared Thin Films, M. L. Fulton, ed., Proc. SPIE4094, 46–57 (2000). [CrossRef]
  3. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  4. J. A. Cox, R. A. Morgan, R. Wilke, C. M. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998). [CrossRef]
  5. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996). [CrossRef]
  6. S. M. Norton, “Resonant grating structures: theory, design, and applications,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1997).
  7. G. A. Golubenko, V. A. Sychugov, A. V. Tishchenko, “The phenomenon of full ‘external’ reflection of light from the surface of a corrugated dielectric waveguide and its use in narrow band filters,” Sov. Phys. Lebedev Inst. Rep. 1(11), 36–40 (1985).
  8. S. S. Wang, R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994). [CrossRef] [PubMed]
  9. Z. Hegedus, R. Netterfield, “Low sideband guided-mode resonant filter,” Appl. Opt. 39, 1469–1473 (2000). [CrossRef]
  10. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  11. A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996). [CrossRef]
  12. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997). [CrossRef]
  13. S. M. Norton, G. M. Morris, T. Erdogan, “Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,” J. Opt. Soc. Am. A 15, 464–472 (1998). [CrossRef]
  14. G. Levy-Yurista, A. A. Friesem, “Very narrow spectral filters with multilayered grating/waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000). [CrossRef]
  15. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241–1245 (2002). [CrossRef] [PubMed]
  16. S. Tibuleac, R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584–586 (2001). [CrossRef]
  17. S. T. Thurman, G. M. Morris, “Resonant-grating filter design: the appropriate effective-index model,” presented at the OSA Annual Meeting, Providence, R.I., 22–26 Oct. 2000.
  18. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  19. S. Peng, G. M. Morris, “An efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
  20. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [CrossRef]
  21. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  22. M. Nevière, R. Petit, M. Cadilhac, “About the theory of optical grating coupler/waveguide systems,” Opt. Commun. 8, 113–117 (1973). [CrossRef]
  23. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989). [CrossRef]
  24. H. Nishihara, M. Haruna, T. Suhara, “Materials and fabrication techniques,” in Optical Integrated Circuits (McGraw-Hill, New York, 1989), pp. 138–171.
  25. J. Saarinen, E. Noponen, J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995). [CrossRef]
  26. J. C. Brazas, L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995). [CrossRef] [PubMed]
  27. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  28. D. K. Jacob, S. C. Cunn, M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249 (2000). [CrossRef]
  29. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-/Interscience, New York, 1991), pp. 80–107. [CrossRef]
  30. F. Lemarchand, A. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  31. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Resonant grating reflection filters for normally incident Gaussian beams,” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 23–25.
  32. I. G. Main, “Forced vibrations,” in Vibrations and Waves in Physics (Cambridge University Cambridge, England1993), pp. 56–77. [CrossRef]
  33. P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990). [CrossRef]
  34. M. T. Gale, K. Knop, R. H. Morf, “Zero-order diffractive microstructures for security applications,” in Optical Security and Anticounterfeiting Systems, W. F. Fagan, ed., Proc. SPIE1210, 83–89 (1990). [CrossRef]
  35. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-/mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998). [CrossRef]
  36. S. Peng, G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited